• Title/Summary/Keyword: Adaptive Neuro Fuzzy Inference System

Search Result 161, Processing Time 0.024 seconds

Estimation of shear resistance offered by EB-FRP U-jackets: An approach based on fuzzy-inference system

  • S Kar;E.V. Prasad;Nikhil P. Zade;Parveen Sihag;K.C. Biswal
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.27-44
    • /
    • 2023
  • The current study targets to apply the adaptive neuro-fuzzy inference system (ANFIS) for the estimation of the shear resistance offered by the externally bonded fiber-reinforced polymer (EB-FRP) U-jackets. A total of 202 groups of data cumulated from previous investigations, were employed for the development and evaluation of the ANFIS model. A relative appraisal between the ANFIS predictions and the results of experiments has shown that the assessments by current ANFIS model are in good concurrence with the latter. In addition, assessment of the accuracy of the ANFIS model was done by relating the ANFIS predictions with the forecasts of eight extensively used design guidelines. Based on the examination of various performance measures, it has been derived that the adequacy of the ANFIS model is better than the available guidelines. A parametric investigation has additionally been done to reconnoiter the influence of individual parameters as well as their combined effects on the shear contribution of EB-FRP. Based on the observations made from the parametric study, it has been witnessed that the ANFIS model has incorporated the effect of different parameters more competently than the considered design guidelines.

SOC-based Sequencing Equalizer for Parallel-connected Battery Configuration using ANFIS Algorithm

  • Duong, Tan-Quoc;La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.174-175
    • /
    • 2019
  • Battery cells are connected in parallel to enlarge the system capacity. However, cell inconsistency may reduce the overall system capacity and cause the over-charging or over-discharging issue. This paper proposes a SOC-based sequencing equalizer for parallel-connected battery configuration that uses the ANFIS (adaptive neuro-fuzzy inference system) algorithm to make the switching decision. Depend on the load current and the SOC (state-of-charge) rate of cells, the switching decision is made to equalize the SOC of the battery cells. The simulation results show that the system capacity is maximized and the controller is adaptive for a large number of parallel-connected in dynamic load profile.

  • PDF

Implementation of Intelligent Expert System for Color Measuring/Matching (칼라 매저링/매칭용 지능형 전문가 시스템의 구현)

  • An, Tae-Cheon;Jang, Gyeong-Won;O, Seong-Gwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.589-598
    • /
    • 2002
  • The color measuring/matching expert system is implemented with a new color measuring method that combines intelligent algorithms with image processing techniques. Color measuring part of the proposed system preprocesses the scanned original color input images to eliminate their distorted components by means of the image histogram technique of image pixels, and then extracts RGB(Red, Green, Blue)data among color information from preprocessed color input images. If the extracted RGB color data does not exist on the matching recipe databases, we can measure the colors for the user who want to implement the model that can search the rules for the color mixing information, using the intelligent modeling techniques such as fuzzy inference system and adaptive neuro-fuzzy inference system. Color matching part can easily choose images close to the original color for the user by comparing information of preprocessed color real input images with data-based measuring recipe information of the expert, from the viewpoint of the delta Eformula used in practical process.

Analysis and Implementation of ANFIS-based Rotor Position Controller for BLDC Motors

  • Navaneethakkannan, C.;Sudha, M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.564-571
    • /
    • 2016
  • This study proposes an adaptive neuro-fuzzy inference system (ANFIS)-based rotor position controller for brushless direct current (BLDC) motors to improve the control performance of the drive under transient and steady-state conditions. The dynamic response of a BLDC motor to the proposed ANFIS controller is considered as standard reference input. The effectiveness of the proposed controller is compared with that of the proportional integral derivative (PID) controller and fuzzy PID controller. The proposed controller solves the problem of nonlinearities and uncertainties caused by the reference input changes of BLDC motors and guarantees a fast and accurate dynamic response with an outstanding steady-state performance. Furthermore, the ANFIS controller provides low torque ripples and high starting torque. The detailed study includes a MATLAB-based simulation and an experimental prototype to illustrate the feasibility of the proposed topology.

A Study on the Analysis of Bicycle Road Service Level by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 자전거도로 서비스수준 분석에 관한 연구)

  • Kim, Kyung Whan;Jo, Gyu Boong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.217-225
    • /
    • 2011
  • Currently our country has very serious problems of traffic congestion and urban environment due to increasing automobile ownership. Recently, our concern about environmentally sustainable transportation and green transportation is increasing, so the government is pushing ahead the policy of bicycle using activation. So it is needed to develop a model to analyze the service level of bicycle roads more realistically. In this study, a neuro-fuzzy inference model to analyze the service level of bicycle roads was built selecting the width of bicycle roads, the number of conflicts during cycling and pedestrian volume, which have fuzzy characteristics, as input variables. The predictability of the model was evaluated comparing the surveyed and the estimated. The values of the statistics, $R^2$, MAE and MSE were 0.987, 0.142, 0.032. Therefore, It may be judged that the explainability of the model is very high. The service levels of bicyle roads estimated by the model are 1~3 steps lower than KHCM assessments. The reason may be explained that the model estimates the service level considering the width of bicycle roads and the number of conflicts simultaneously besides pedestrian volume.

The Fuzzy Wavelet Neural Network System based on the improved ANFIS (개선된 ANFIS 기반 퍼지 웨이브렛 신경망 시스템)

  • 변오성;박인규;백덕수;문성룡
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.129-132
    • /
    • 2002
  • 본 논문은 웨이브렛 변환 다중해상도 분해(multi-resolution Analysis : MRA)와 적응성 뉴로-퍼지 인터페이스 시스템(Adaptive Neuro-Fuzzy Inference System : ANFIS)을 기반으로 한 웨이브렛 신경망을 가지고 임의의 비선형 함수 학습 근사화를 개선하는 것이다. ANFIS 구조는 벨형 퍼지 함수로 구성이 되었고, 웨이브렛 신경망은 전파 알고리즘과 역전파 신경망 알고리즘으로 구성되었다. 여기 웨이브렛 구성은 단일 크기이고, ANFIS 기반 웨이브렛 신경망의 학습을 위해 역전파 알고리즘을 사용하였다. 1차원과 2차원 함수에서 웨이브렛 전달 파라미터 학습과 ANFIS의 벨형 소속 함수를 이용한 ANFIS 모델 기반 웨이브렛 신경망의 웨이브렛 기저 수 감소와 수렴 속도 성능이 기존의 알고리즘 보다 개선되었음을 확인하였다.

  • PDF

Adaptation Capability of Reservoirs Considering Climate Change in the Han River Basin, South Korea (기후변화를 고려한 한강유역 저수지의 적응능력 평가)

  • Chung, Gunhui;Jeon, Myeonho;Kim, Hungsoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.439-447
    • /
    • 2011
  • It is a main concern for sustainable development in water resources management to evaluate adaptation capability of water resources structures under the future climate conditions. This study introduced the Fuzzy Inference System (FIS) to represent the change of release and storage of reservoirs in the Han River basin corresponding to various inflows. Defining the adaptation capability of reservoirs as the change of maximum and/or minimum of storage corresponding to the change of inflow, the study showed that Gangdong Dam has the worst adaptation capability on the variation of inflow, while Soyanggang Dam has the best capability. This study also constructed an Adaptive Neuro-Fuzzy Inference System (ANFIS) for the more accurate and efficient simulation of the adaptation capability of the Soyanggang Dam. Nine Inflow scenarios were generated using historical data from frequency analysis and synthetic data from two general circulation models with different climate change scenarios. The ANFIS showed significantly different consequences of the release and reservoir storage upon inflow scenarios of Soyanggang Dam, whilst it provides stable reservoir operations despite the variability of rainfall pattern.

Control of a Swing-up Inverted Pendulum by an Adaptive Neuro Fuzzy Inference System (적응 뉴로-퍼지 추론 시스템을 이용한 스윙-업 도립진자 제어)

  • Kim, Keun-Ki;Yu, Chang-Wan;Hong, Dae-Seung;Sin, Ja-Ho;Choe, Chang-Ho;Choe, Yong-Gil;Song, Yeong-Mok;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2261-2263
    • /
    • 2001
  • Fuzzy controller design consists of intuition, and any other information about how to control system, into a set of rules. These rules can then be applied to the system. It is very important to decide parameters of IF-THEN rules. Because fuzzy controller can make more adequate force to the plant by means of parameter optimization, which is accomplished by learning procedure. In this paper, we apply fuzzy controller designed to the Swing-UP Inverted pendulum.

  • PDF

Development of an Intelligent and Hybrid Scheme for Rapid INS Alignment

  • Huang, Yun-Wen;Chiang, Kai-Wei
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.115-120
    • /
    • 2006
  • This article propose a new idea of developing a hybrid scheme to achieve faster INS alignment with higher accuracy using a novel procedure to estimate the initial attitude angles that combines a Kalman filter and Adaptive Neuro-Fuzzy Inference System architecture. A tactical grade inertial measurement unit was applied to verify the performance of proposed scheme in this study. The preliminary results indicated the outstanding improvements in both time consumption for fine alignment process and accuracy of estimated attitude angles, especially in heading angles. In general, the improvement in terms of time consumption and the accuracy of estimated attitude estimated accuracy reached 80% and 70% respectively during alignment process after compensating the attitude angles estimated by an extended Kalman filter with 15 states using proposed approach. It is worth mentioned that the proposed approach can be implemented in general real time navigation applications.

  • PDF

Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy

  • Kose, M. Metin;Kayadelen, Cafer
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.401-419
    • /
    • 2013
  • In this study, the efficiency of adaptive neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the effects of infill walls on base reactions and roof drift of reinforced concrete frames were investigated. Current standards generally consider weight and fundamental period of structures in predicting base reactions and roof drift of structures by neglecting numbers of floors, bays, shear walls and infilled bays. Number of stories, number of bays in x and y directions, ratio of shear wall areas to the floor area, ratio of bays with infilled walls to total number bays and existence of open story were selected as parameters in GEP and ANFIS modeling. GEP and ANFIS have been widely used as alternative approaches to model complex systems. The effects of these parameters on base reactions and roof drift of RC frames were studied using 3D finite element method on 216 building models. Results obtained from 3D FEM models were used to in training and testing ANFIS and GEP models. In ANFIS and GEP models, number of floors, number of bays, ratio of shear walls and ratio of infilled bays were selected as input parameters, and base reactions and roof drifts were selected as output parameters. Results showed that the ANFIS and GEP models are capable of accurately predicting the base reactions and roof drifts of RC frames used in the training and testing phase of the study. The GEP model results better prediction compared to ANFIS model.