• 제목/요약/키워드: Adaptive Loop

검색결과 509건 처리시간 0.031초

적응모델추종제어기법에 의한 산업용 로봇 매니퓰레이터 제어기의 성능개선 및 시뮬레이션에 관한 연구 (A study on simulation and performance improvement of industrial robot manipulator controller using adaptive model following control method)

  • 허남수;한성현;이만형
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.463-477
    • /
    • 1991
  • This study proposed a new method to design a robot manipulator control system capable of tracking the trajectories of joint angles in a reasonable accuracy to cover with actual situation of varying payload, uncertain parameters, and time delay. The direct adaptive model following control method has been used to improve existing industrial robot manipulator control system design. The proposed robot manipulator controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories predefined by the designer. The manipulator control system studied has two loops: they are an inner loop on adaptive model following controller to compensate nonlinearity in the manipulator dynamic equation and to decouple the coupling terms and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstability approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in various cases, load variation, parameter uncertainties. and time delay. Since the proposed adaptive control method requires only a small number of parameters to be estimated, the controller has a relatively simple structure compared to the other adaptive manipulator controllers. Therefore, the method used is expected to be well suited for a high performance robot controller under practical operation environments.

Design of a smart MEMS accelerometer using nonlinear control principles

  • Hassani, Faezeh Arab;Payam, Amir Farrokh;Fathipour, Morteza
    • Smart Structures and Systems
    • /
    • 제6권1호
    • /
    • pp.1-16
    • /
    • 2010
  • This paper presents a novel smart MEMS accelerometer which employs a hybrid control algorithm and an estimator. This scheme is realized by adding a sliding-mode controller to a conventional PID closed loop system to achieve higher stability and higher dynamic range and to prevent pull-in phenomena by preventing finger displacement from passing a maximum preset value as well as adding an adaptive nonlinear observer to a conventional PID closed loop system. This estimator is used for online estimation of the parameter variations for MEMS accelerometers and gives the capability of self testing to the system. The analysis of convergence and resolution show that while the proposed control scheme satisfies these criteria it also keeps resolution performance better than what is normally obtained in conventional PID controllers. The performance of the proposed hybrid controller investigated here is validated by computer simulation.

First-order Generalized Integrator Based Frequency Locked Loop and Synchronization for Three-Phase Grid-connected Converters under Adverse Grid Conditions

  • Luo, Zhaoxu;Su, Mei;Sun, Yao;Liu, Zhangjie;Dong, Mi
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1939-1949
    • /
    • 2016
  • This paper presents an alternative frequency adaptive grid synchronization technique named HDN-FLL, which can accurately extract the fundamental positive- and negative-sequence components and interested harmonics in adverse three-phase grid voltage. The HDN-FLL is based on the harmonic decoupling network (HDN) consisting of multiple first order complex vector filters (FOCVF) with a frequency-locked loop (FLL), which makes the system frequency adaptive. The stability of the proposed FLL is strictly verified to be global asymptotically stable. In addition, the linearization and parameters tuning of the FLL is also discussed. The structure of the HDN has been widely used as a prefilter in grid synchronization techniques. However, the stability of the general HDN is seldom discussed. In this paper, the transfer function expression of the general HDN is deduced and its stability is verified by the root locus method. To show the advantages of the HDN-FLL, a simulation comparison with other gird synchronization methods is carried out. Experimental results verify the excellent performance of the proposed synchronization method.

기준 모델 추종 기능을 이용한 뉴로-퍼지 적응 제어기 설계 (A design of neuro-fuzzy adaptive controller using a reference model following function)

  • 이영석;유동완;서보혁
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.203-208
    • /
    • 1998
  • This paper presents an adaptive fuzzy controller using an neural network and adaptation algorithm. Reference-model following neuro-fuzzy controller(RMFNFC) is invesgated in order to overcome the difficulty of rule selecting and defects of the membership function in the general fuzzy logic controller(FLC). RMFNFC is developed to tune various parameter of the fuzzy controller which is used for the discrete nonlinear system control. RMFNFC is trained with the identification information and control closed loop error. A closed loop error is used for design criteria of a fuzzy controller which characterizes and quantize the control performance required in the overall control system. A control system is trained up the controller with the variation of the system obtained from the identifier and closed loop error. Numerical examples are presented to control of the discrete nonlinear system. Simulation results show the effectiveness of the proposed controller.

  • PDF

태양광 시스템을 위한 가변 조정계수 기반의 적응형 MPPT 제어 기법 (An Adaptive Maximum Power Point Tracking Scheme Based on a Variable Scaling Factor for Photovoltaic Systems)

  • 이귀준;김래영;현동석;임춘호;김우철
    • 전력전자학회논문지
    • /
    • 제17권5호
    • /
    • pp.423-430
    • /
    • 2012
  • An adaptive maximum power point tracking (MPPT) scheme employing a variable scaling factor is presented. A MPPT control loop was constructed analytically and the magnitude variation in the MPPT loop gain according to the operating point of the PV array was identified due to the nonlinear characteristics of the PV array output. To make the crossover frequency of the MPPT loop gain consistent, the variable scaling factor was determined using an approximate curve-fitted polynomial equation about linear expression of the error. Therefore, a desirable dynamic response and the stability of the MPPT scheme were maintained across the entire MPPT voltage range. The simulation and experimental results obtained from a 3 KW rated prototype demonstrated the effectiveness of the proposed MPPT scheme.

A Hybrid Control Development to Suppress the Noise in the Rectangular Enclosure using an Active/Passive Smart Foam Actuator

  • Kim Yeung-Shik;Kim Gi-Man;Roh Cheal-Ha;Fuller C. R.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.37-43
    • /
    • 2005
  • This paper presents a hybrid control algorithm for the active noise control in the rectangular enclosure using an active/passive foam actuator. The hybrid control composes of the adaptive feedforward with feedback loop in which the adaptive feedforward control uses the well-known filtered-x LMS(least mean square) algorithm and the feedback loop consists of the sliding mode controller and observer. The hybrid control has its robustness for both transient and persistent external disturbances and increases the convergence speed due to the reduced variance of the jiltered-x signal by adding the feedback loop. The sliding mode control (SMC) is used to incorporate insensitivity to parameter variations and rejection of disturbances and the observer is used to get the state information in the controller deign. An active/passive smart foam actuator is used to minimize noise actively using an embedded PVDF film driven by an electrical input and passively using an absorption-foam. The error path dynamics is experimentally identified in the form of the auto-regressive and moving-average using the frequency domain identification technique. Experimental results demonstrate the effectiveness of the hybrid control and the feasibility of the smart foam actuator.

적응 적분바이너리 관측기를 이용한 돌극형 영구자석 동기전동기 센서리스 속도제어 (A Sensorless Speed control of IPMSM using an Adaptive Integral Binary Observer)

  • 이형;김영조;강형석;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.229-231
    • /
    • 2006
  • The paper presents a sensorless speed control of interior permanent magnet synchronous motors using an adaptive integral binary observer in view of composition with a main loop regulator and an auxiliary loop regulator. The binary observer has a property of the chattering alleviation in the constant boundary layer; however, the steady state estimation accuracy and robustness are dependent upon with width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamic to the switching hyperplane equation.

  • PDF

직접 적응 극배치 제어기의 강인성에 관한 연구 (A Study on the Robustness of a Direct Adaptive Pole-placement Controller)

  • 김영진;김응석;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.666-669
    • /
    • 1991
  • This paper deals with the robustness of a direct adaptive pole-placement control algorithm for continuous time plants with unmodeled dynamics. In this paper, least squares method is used for controller parameter adaptation and covariance matrix update equation is modified by normalizing signal to guarantee the boundedness of all signals in the closed loop system. In the proposed algorithm, no a priori knowledge is required and it is shown that persistence of excitation condition is required to ensure the stability of the closed loop system.

  • PDF

적응 FNN에 의한 유도전동기의 센서리스 제어 (Sensorless Control of Induction Motor using Adaptive FNN Controller)

  • 이영실;이정철;이홍균;남수명;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.179-181
    • /
    • 2004
  • This paper is proposed an adaptive fuzzy-neural network(A-FNN) controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed estimation of induction motor using A closed-loop state observer. The rotor position is calculated through the stator flux position and an estimated flux value of rotation reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The results of analysis prove that the proposed control system has strong robustness to rotor parameter variation, and has good steady-state accuracy and transitory response.

  • PDF

주파수역 성능을 고려한 유압 위치시스템의 강인 적응 제어 (Robust Adaptive Control of Hydraulic Positioning System Considering Frequency Domain Performance)

  • 김기범;김인수
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.157-163
    • /
    • 2014
  • In this paper, a robust MRAC (model reference adaptive control) scheme is applied to control an electrohydraulic positioning system under various loads. The inverse dead-zone compensator in the control system cancels out the dead-zone response, and an integrator added to the controller provides good position-tracking ability. LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) closed-loop model is used as the reference model for learning the MRAC system. LQG/LTR provides a systematic technique to design the linear controller that optimizes the objective function using some compromise between the control effort and the system performance in the frequency domain. Different external load tests are performed to investigate the effectiveness of the designed MRAC system in real time. The experimental results show that the tracking performance of the proposed system is highly accurate, which offers considerable robustness even with a large change in the load.