• Title/Summary/Keyword: Adaptive Grid

Search Result 221, Processing Time 0.024 seconds

An Adaptive Fast Motion Estimation Based on Directional Correlation and Predictive Values in H.264 (움직임 방향 연관 및 예측치 적용 기반 적응적 고속 H.264 움직임 추정 알고리즘의 설계)

  • Kim, Cheong-Ghil
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2011
  • This research presents an adaptive fast motion estimation (ME) computation on the stage of uneven multi-hexagon grid search (UMHGS) algorithm included in an unsymmetrical-cross multi-hexagon-grid search (UMHexagonS) in H.264 standard. The proposed adaptive method is based on statistical analysis and previously obtained motion vectors to reduce the computational complexity of ME. For this purpose, the algorithm is decomposed into three processes: skipping, terminating, and reducing search areas. Skipping and terminating are determined by the statistical analysis of the collected minimum SAD (sum of absolute difference) and the search area is constrained by the slope of previously obtained motion vectors. Simulation results show that 13%-23% of ME time can be reduced compared with UMHexagonS, while still maintaining a reasonable PSNR (peak signal-to-noise ratio) and average bitrates.

  • PDF

On a new fourth order self-adaptive time integration algorithm

  • Zhong, Wanxie;Zhu, Jianping
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.589-600
    • /
    • 1996
  • An explicit 4th order time integration scheme for solving the convection-diffusion equation is discussed in this paper. A system of ordinary differential equations are derived first by discretizing the spatial derivatives of the relevant PDE using the finite difference method. The integration of the ODEs is then carried out using a 4th order scheme and a self-adaptive technique based on the spatial grid spacing. For a non-uniform spatial grid, different time step sizes are used for the integration of the ODEs defined at different spatial points, which improves the computational efficiency significantly. A numerical example is also discussed in the paper to demonstrate the implementation and effectiveness of the method.

Inverse Offset Method for Adaptive Cutter Path Generation from Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • The inverse offset method (IOM) is widely used for generating cutter paths from the point-based surface where the surface is characterised by a set of surface points rather than parametric polynomial surface equations. In the IOM, cutter path planning is carried out by specifying the grid sizes, called the step-forward and step-interval distances respectively in the forward and transverse cutting directions. The step-forward distance causes the chordal deviation and the step-forward distance produces the cusp. The chordal deviation and cusp are also functions of local surface slopes and curvatures. As the slopes and curvatures vary over the surface, different step-forward and step-interval distances are appropriate in different areas for obtaining the machined surface accurately and efficiently. In this paper, the chordal deviation and cusp height are calculated in consideration with the surface slopes and curvatures, and their combined effect is used to estimate the machined surface error. An adaptive grid generation algorithm is proposed, which enables the IOM to generate cutter paths adaptively using different step-forward and step-interval distances in different regions rather than constant step-forward and step-interval distances for entire surface.

A New Orthogonal Signal Generator with DC Offset Rejection for Single-Phase Phase Locked Loops

  • Huang, Xiaojiang;Dong, Lei;Xiao, Furong;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.310-318
    • /
    • 2016
  • This paper presents a new orthogonal signals generator (OSG) with DC Offset rejection for implementing a phase locked loop (PLL) in single-phase grid-connected power systems. An adaptive filter (AF) based on the least mean square (LMS) algorithm is used to constitute the OSG in this study. The DC offset in the measured grid voltage signal can be significantly rejected in the developed OSG technique. This generates two pure orthogonal signals that are free from the DC offset. As a result, the DC offset rejection performance of the presented single-phase phase locked loop (SPLL) can be enhanced. A mathematical model of the developed OSG and the principle of the adaptive filter based SPLL (AF-SPLL) are presented in detail. Finally, simulation and experimental results demonstrate the feasibility of the proposed AF-SPLL.

An Adaptive Digital Notch Filter for Stabilization of Single-Phase Grid-Connected Inverters With LCL Filter (LCL 필터가 결합된 단상 계통연계형 인버터의 안정화를 위한 적응형 디지털 노치 필터)

  • Heo, Jin-Yong;Kim, Hak-Soo;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.307-314
    • /
    • 2021
  • Even though the LCL filters have superior harmonic attenuation ability to L filters, stability has always been an issue. The system could be unstable because of the resonance phenomenon, especially when digital controller is used. Adding a notch filter to the compensator is one approach to solve the problem. Resonance phenomenon can be inhibited by aligning notch frequency to system resonance frequency. However, resonance frequency variation can be obtained because the actual system has a nonstationary characteristic. Therefore, the system could be unstable, where the system parameters are changed when the conventional notch filter is used. An adaptive digital notch filter that stabilizes the system even system parameters are changed. Simulation and experiment results are provided to verify the validity of the proposed adaptive filter.

A Study on the Fault Analysis for a Micro Smart Grid Simulator Design Using MEMS' Miniaturization Technology (MEMS의 소형화 기술을 이용한 마이크로 스마트 그리드 시뮬레이터 설계를 위한 고장해석법에 대한 연구)

  • Ko, Yun-Seok;Oh, Se-Pil;Kim, Hyo-Seong;Kim, In-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.315-324
    • /
    • 2017
  • The smart grid with distributed power supply introduces a number of problems including not only the problems of the existing power grid but also the problem of protection co-operation due to new electric phenomenon because it has a mixed operation structure combining the existing radial operation structure and the new loop operation structure. The EMTP based power system analysis method has flexibility and convenience from the view of system configuration but it requires another experimental verification because of uncertainty of design and analysis results. On the other hand, the real demonstration system has difficulties in observing accurate fault on large scale system due to considerable economical and spatial construction cost, system configuration constraint, and it is difficult to demonstrate the distributed, autonomous and adaptive control strategy of smart grid. In this paper, a basic theory for a micro smart grid simulator design using MEMS(Micro Electro-Mechanical Systems) miniaturization technology is studied which can safely and freely experiment and observe electrical phenomena, and distribution, autonomous adaptive control strategy for disturbances on 22.9kV smart grid under minimum economic and spatial cost.

Analysis of Using Geometry-based Adaptive Octree Method (Geometry-based Adaptive Octree 방법에 대한 고찰)

  • Park Jong-Ryoul;Sah Jong-Youb
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.86-91
    • /
    • 2000
  • Automatic method for generation of mesh and three dimension natural convection flow result adapted by this method are presented in this paper. It lake long time to meshing com plex 3-D geometries, and It's difficult to clustering grid at surface boundary. Octree structure resolve this difficulty.

  • PDF

Adaptive Energy Optimization for Object Tracking in Wireless Sensor Network

  • Feng, Juan;Lian, Baowang;Zhao, Hongwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1359-1375
    • /
    • 2015
  • Energy efficiency is critical for Wireless Sensor Networks (WSNs) since sensor nodes usually have very limited energy supply from battery. Sleep scheduling and nodes cooperation are two of the most efficient methods to achieve energy conservation in WSNs. In this paper, we propose an adaptive energy optimization approach for target tracking applications, called Energy-Efficient Node Coordination (EENC), which is based on the grid structure. EENC provides an unambiguous calculation and analysis for optimal the nodes cooperation theoretically. In EENC, the sleep schedule of sensor nodes is locally synchronized and globally unsynchronized. Locally in each grid, the sleep schedule of all nodes is synchronized by the grid head, while globally the sleep schedule of each grid is independent and is determined by the proposed scheme. For dynamic sleep scheduling in tracking state we propose a multi-level coordination algorithm to find an optimal nodes cooperation of the network to maximize the energy conservation while preserving the tracking performance. Experimental results show that EENC can achieve energy saving of at least 38.2% compared to state-of-the-art approaches.

Analysis and Application of Repetitive Control Scheme for Three-Phase Active Power Filter with Frequency Adaptive Capability

  • Sun, Biaoguang;Xie, Yunxiang;Ma, Hui;Cheng, Li
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.618-628
    • /
    • 2016
  • Active power filter (APF) has been proved as a flexible solution for compensating the harmonic distortion caused by nonlinear loads in power distribution power systems. Digital repetitive control can achieve zero steady-state error tracking of any periodic signal while the sampling points within one repetitive cycle must be a known integer. However, the compensation performance of the APF would be degradation when the grid frequency varies. In this paper, an improved repetitive control scheme with frequency adaptive capability is presented to track any periodic signal with variable grid frequency, where the variable delay items caused by time-varying grid frequency are approximated with Pade approximants. Additionally, the stability criterion of proposed repetitive control scheme is given. A three-phase shunt APF experimental platform with proposed repetitive control scheme is built in our laboratory. Simulation and experimental results demonstrate the effectiveness of the proposed repetitive control scheme.

Versatile UPQC Control System with a Modified Repetitive Controller under Nonlinear and Unbalanced Loads

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1093-1104
    • /
    • 2015
  • A standard repetitive controller (RC) is theoretically able to replace a bank of resonant controllers in harmonic signals tracking applications. However, the traditional RC has some drawbacks such as a poor dynamic response and a complex structure to compensate grid frequency deviations for an effective unified power quality conditioner (UPQC) control scheme. In order to solve these problems, an improved RC with an outstanding dynamic response and a simplified grid frequency adaptive scheme is proposed for UPQC control systems in this paper. The control strategy developed for the UPQC has delay time, i.e., one-sixth of a fundamental period (Tp/6), repetitive controllers. As a result, the UPQC system can provide a fast dynamic response along with good compensation performance under both nonlinear and unbalanced loads. Furthermore, to guarantee the excellent performance of the UPQC under grid frequency deviations, a grid frequency adaptive scheme was developed for the RC using a simple first order Padé's approximation. When compared with other approaches, the proposed control method is simpler in structure and requires little computing time. Moreover, the entire control strategy can be easily implemented with a low-cost DSP. The effectiveness of the proposed control method is verified through various experimental tests.