• 제목/요약/키워드: Adaptive Fuzzy Algorithm

검색결과 408건 처리시간 0.031초

HAI 기반의 SV-PWM을 이용한 IPMSM의 고성능 제어 (High Performance Control of IPMSM Using HAI based SV-PWM)

  • 김도연;최정식;고재섭;정병진;정동화
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.175-177
    • /
    • 2008
  • This paper is proposed a high performance speed control of the Interior Permanent Magnet Synchronous Motor through the HAI based SV-PWM. SV-PWM is controlled using HAI control. SV-PWM can be maximum used maximum dc link voltage and is excellent control method due to characteristic to reducing harmonic more than others. The hybrid combination of fuzzy control and adaptive control will produce a powerful representation flexibility and numerical processing capability. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

Multiple-Channel Active Noise Control by ANFIS and Independent Component Analysis without Secondary Path Modeling

  • Kim, Eung-Ju;Lee, Sang-yup;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.22.1-22
    • /
    • 2001
  • In this paper we present Multiple-Channel Active Noise Control[ANC] system by employing Independent Component Analysis[ICA] and Adaptive Network Fuzzy Inference System[ANFIS]. ICA is widely used in signal processing and communication and it use prewhiting and appropriate choice of non-linearities, ICA can separate mixed signal. ANFIS controller is trained with the hybrid learning algorithm to optimize its parameters for adaptively canceling noise. This new method which minimizes a statistical dependency of mutual information(MI) in mixed low frequency noise signal and there is no need to secondary path modeling. The proposed implementations achieve more powerful and stable noise reduction than Filtered-X LMS algorithms which is needed for LTI assumption and precise secondary error

  • PDF

Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns

  • Seitllari, A.;Naser, M.Z.
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.271-282
    • /
    • 2019
  • Concrete undergoes a series of thermo-based physio-chemical changes once exposed to elevated temperatures. Such changes adversely alter the composition of concrete and oftentimes lead to fire-induced explosive spalling. Spalling is a multidimensional, complex and most of all sophisticated phenomenon with the potential to cause significant damage to fire-exposed concrete structures. Despite past and recent research efforts, we continue to be short of a systematic methodology that is able of accurately assessing the tendency of concrete to spall under fire conditions. In order to bridge this knowledge gap, this study explores integrating novel artificial intelligence (AI) techniques; namely, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), together with traditional statistical analysis (multilinear regression (MLR)), to arrive at state-of-the-art procedures to predict occurrence of fire-induced spalling. Through a comprehensive datadriven examination of actual fire tests, this study demonstrates that AI techniques provide attractive tools capable of predicting fire-induced spalling phenomenon with high precision.

Intrusion Detection System Modeling Based on Learning from Network Traffic Data

  • Midzic, Admir;Avdagic, Zikrija;Omanovic, Samir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5568-5587
    • /
    • 2018
  • This research uses artificial intelligence methods for computer network intrusion detection system modeling. Primary classification is done using self-organized maps (SOM) in two levels, while the secondary classification of ambiguous data is done using Sugeno type Fuzzy Inference System (FIS). FIS is created by using Adaptive Neuro-Fuzzy Inference System (ANFIS). The main challenge for this system was to successfully detect attacks that are either unknown or that are represented by very small percentage of samples in training dataset. Improved algorithm for SOMs in second layer and for the FIS creation is developed for this purpose. Number of clusters in the second SOM layer is optimized by using our improved algorithm to minimize amount of ambiguous data forwarded to FIS. FIS is created using ANFIS that was built on ambiguous training dataset clustered by another SOM (which size is determined dynamically). Proposed hybrid model is created and tested using NSL KDD dataset. For our research, NSL KDD is especially interesting in terms of class distribution (overlapping). Objectives of this research were: to successfully detect intrusions represented in data with small percentage of the total traffic during early detection stages, to successfully deal with overlapping data (separate ambiguous data), to maximize detection rate (DR) and minimize false alarm rate (FAR). Proposed hybrid model with test data achieved acceptable DR value 0.8883 and FAR value 0.2415. The objectives were successfully achieved as it is presented (compared with the similar researches on NSL KDD dataset). Proposed model can be used not only in further research related to this domain, but also in other research areas.

SPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어 (Efficiency Optimization Control of IPMSM Drive using SPI Controller)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제25권7호
    • /
    • pp.15-25
    • /
    • 2011
  • This proposes an online loss minimization algorithm for series PI(SPI) based interior permanent magnet synchronous motor(IPMSM) drive to yield high efficiency and high dynamic performance over wide speed range. The loss minimization algorithm is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector control purpose, a SPI is used as a speed controller which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. Also, this paper proposes current control of model reference adaptive fuzzy controller(MFC), and estimation of speed using artificial neural network(ANN) controller. The proposed efficiency optimization control, SPI, MFC, ANN in this paper is applied to IPMSM drive system, the validity of this paper is proved by analyzing response characteristics in variety operating conditions.

Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델 (River stage forecasting models using support vector regression and optimization algorithms)

  • 서영민;김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

Research on Speed Estimation Method of Induction Motor based on Improved Fuzzy Kalman Filtering

  • Chen, Dezhi;Bai, Baodong;Du, Ning;Li, Baopeng;Wang, Jiayin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.272-275
    • /
    • 2014
  • An improved fuzzy Kalman filtering speed estimation scheme was proposed by means of measuring stator side voltage and current value based on vector control state equation of induction motor. The designed fuzzy adaptive controller conducted recursive online correction of measurement noise covariance matrix by monitoring the ratio of theory residuals and actual residuals to make it approach real noise level gradually, allowing the filter to perform optimal estimation to improve estimation accuracy of EKF. Meanwhile, co-simulation scheme based on MATLAB and Ansoft was proposed in order to improve simulation accuracy. Field-circuit coupling problems of induction motor under the action of vector control were solved and the parameter optimization accuracy was improved dramatically. The simulation and experimental results show that this algorithm has a strong ability to inhibit the random measurement noise. It is able to estimate motor speed accurately, and has superior static and dynamic characteristics.

FNN과 ANN을 이용한 유도전동기의 속도 제어 및 추정 (Estimation and Control of Speed of Induction Motor using FNN and ANN)

  • 이정철;박기태;정동화
    • 전자공학회논문지SC
    • /
    • 제42권6호
    • /
    • pp.77-82
    • /
    • 2005
  • 본 논문은 FNN과 ANN 제어기를 이용한 유도전동기의 속도 제어 및 추정을 제시한다. 먼저, PI 제어기에서 나타나는 문제점을 해결하기 위하여 퍼지제어와 신경회로망을 혼합 적용한 FN 제어기를 설계한다. 퍼지제어기의 강인성 제어와 신경회로망의 고도의 적응제어의 장점들을 접목한다. 다음은 ANN을 이용하여 유도전동기 드라이브의 속도 추정기법을 제시한다. 2층 구조를 가진 신경회로망에 BPA(Back Propagation Algorithm)를 적용하여 유도전동기 드라이브의 속도를 추정한다. 추정속도의 타당성을 입증하기 위하여 시스템을 구성하여 제어특성을 분석한다. 그리고 추정된 속도를 지령속도와 비교하여 전류제어와 공간벡터 PWM을 통하여 유도전동기의 속도를 제어한다. 본 연구에서 제시한 FNN과 ANN의 제어특성 및 추정성능을 분석하고 그 결과를 제시한다.

p-Snake의 성능 향상을 위한 적응 원형 생성 기법 (Adaptive prototype generating technique for improving performance of a p-Snake)

  • 오승택;전병환
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2757-2763
    • /
    • 2015
  • p-Snake는 기존의 동적윤곽모델(Active Contour Model)에 원형에너지를 추가로 적용한 에너지 최소화 알고리즘으로 에지 정보가 명확하지 않은 영역에서의 윤곽선 추출을 위해 사용된 방법이다. 본 논문에서는 원과 직선 프리미티브(primitive)의 조합으로 표현되는 가변 원형(prototype)과 퍼지 함수를 적용한 원형에너지장의 생성 기법을 제안하여 p-Snake의 윤곽선 추출 성능을 개선하였다. 제안 방법은 입력된 부품 코드를 기반으로 원형을 정의하고 전처리 과정을 통해 구해진 각 프리미티브 구간에서 대략적인 초기 윤곽을 검출한 후, 프리미티브들이 가변적으로 적응하여 원형을 생성하고 여기에 원형과의 거리에 따른 윤곽 확률을 퍼지 함수를 통해 계산하여 원형에너지 장을 생성하였다. 이를 p-Snake에 적용하여 다양한 소형부품들을 대상으로 준비한 200장의 영상에서 윤곽선을 검출하고, 원형과의 유사도를 비교한 결과 적응 원형을 사용한 p-Snake가 기존의 Snake에 비해 약 4.6% 가량 우수함을 보였다.

유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구 (Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria)

  • 자크로프 마샵;보첼키아 하미드;스탬바울 마대니;김성원;싱 비제이
    • 한국수자원학회논문집
    • /
    • 제53권6호
    • /
    • pp.395-408
    • /
    • 2020
  • 본 연구논문은 북부아프리카의 알제리에 위치한 하천유역에서 다중선행일 유출량의 예측을 위하여 진화적 최적화기법과 k-fold 교차검증을 결합한 세 개의 서로 다른 기계학습 접근법 (인공신경망, 적응 뉴로퍼지 시스템, 그리고 웨이블릿 기반 신경망)을 개발하고 적용하는 것이다. 인공신경망과 적응 뉴로퍼지 시스템은 root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), 그리고 peak flow criteria (PFC) 의 네 개의 통계지표를 기반으로 하여 모형의 훈련 및 테스팅 결과 유사한 모형수행결과를 나타내었다. 웨이블릿 기반 신경망모형은 하루선행일 테스팅의 결과 RMSE = 8.590 ㎥/sec 과 PFC = 0.252로 분석되어서 인공신경망의 RMSE = 19.120 ㎥/sec, PFC = 0.446 과 적응 뉴로퍼지 시스템의 RMSE = 18.520 ㎥/sec, PFC = 0.444 보다 양호한 결과를 나타내었고, NSE와 R의 값도 웨이블릿 기반 신경망모형이 우수한 것으로 나타났다. 그러므로 웨이블릿 기반 신경망은 알제리 세이보스 하천에서 다중선행일의 예측을 위하여 효율적인 도구로 사용할 수 있다.