• Title/Summary/Keyword: Adaptive Distance Measurement

Search Result 34, Processing Time 0.024 seconds

Performance Analysis of Pulse Positioning Using Adaptive Threshold Detector (ATD)

  • Chang, Jae Won;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • This paper describes the measurement of pulse positioning (input time) to calculate a time of arrival (TOA) that takes from transmitting a signal from the target of multilateration (MLAT) system to receiving the signal at the receiver. In this regard, this paper analyzes performances of simple threshold method and level adjust system (LAS) method, which is one of the adaptive threshold detector (ATD) methods, among many methods to calculate pulse positioning of signal received at the receiver. To this end, Cramer-rao lower bound (CRLB) with regard to pulse positioning, which was measured when signals transmitted from a transponder mounted at the target were received at the receiver, was induced and then deviation sizes with regard to pulse positioning, which was measured with simple threshold and LAS methods through MATLAB simulations, were compared. Next, problems occurring according to a difference in amplitude of signals inputted to each receiver are described when pulse positioning is measured at multiple receivers located at a different distance from the target as is the case in the MLAT system. Furthermore, LAS method to resolve the problems is explained. Lastly, this study analyzes whether a pulse positioning error occurring due to the signal noise satisfies the requirement (6 nsec. or lower) recommended for the MLAT system when using these two methods.

Estimating Location in Real-world of a Observer for Adaptive Parallax Barrier (적응적 패럴랙스 베리어를 위한 사용자 위치 추적 방법)

  • Kang, Seok-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1492-1499
    • /
    • 2019
  • This paper propose how to track the position of the observer to control the viewing zone using an adaptive parallax barrier. The pose is estimated using a Constrained Local Model based on the shape model and Landmark for robust eye-distance measurement in the face pose. Camera's correlation converts distance and horizontal location to centimeter. The pixel pitch of the adaptive parallax barrier is adjusted according to the position of the observer's eyes, and the barrier is moved to adjust the viewing area. This paper propose a method for tracking the observer in the range of 60cm to 490cm, and measure the error, measurable range, and fps according to the resolution of the camera image. As a result, the observer can be measured within the absolute error range of 3.1642cm on average, and it was able to measure about 278cm at 320×240, about 488cm at 640×480, and about 493cm at 1280×960 depending on the resolution of the image.

Depth Measurement Method Robust against Scattering of Line Lasers (라인 레이저의 산란에 강인한 심도 측정 방법)

  • Ko, Kwangjin;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • Line-laser beams are used for depth measurement of welding beads along the circumference of a pipe. For this, first we project a line-laser beam on an rotating pipe and take a sequence of images of the beam projected on the pipe using a CCD camera. Second, the projected line laser beam in each image is detected, converted into a thin curve. Finally measure the distance between the thinned curve and an imaginary line. When a line-laser beam is projected to a rough metal surface such as arc welding beads, the beam is severely scattered. This severe scattering makes the thinned curve perturbed. In this paper, we propose a thinning method robust against scattering of line lasers. First, we extract a projected line laser beam region using an adaptive threshold. Second, we model a thinned curve with a spline curve with control points. Next, we adjust the control points to fit the curve to the projected line-laser beam. Finally, we take a weighted mean of thin curves on a sequence of image frames. Experiments shows that the proposed thinning method results in a thinning curve, which is smooth and fit to the projected line-laser beam with small error.

Improved Adaptive Smoothing Filter for Indoor Localization Using RSSI

  • Kim, Jung-Ha;Seong, Ju-Hyeon;Ha, Yun-Su;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.179-186
    • /
    • 2015
  • In the indoor location estimation system, which has recently been actively studied, the received signal strength indicator contains a high level of noise when measuring the signal strength in the range between two nodes consisting of a receiver and a transceiver. To minimize the noise level, this paper proposes an improved adaptive smoothing filter that provides different exponential weights to the current value and previous averaged one of the data that were obtained from the nodes, because the characteristic signal attenuation of the received signal strength indicator generally has a log distribution. The proposed method can effectively decrease the noise level by using a feedback filter that can provide different weights according to the noise level of the obtained data and thus increase the accuracy in the distance and location without an additional filter such as the link quality indicator, which can verify the communication quality state to decrease the range errors in the indoor location recognition using ZigBee based on IEEE 802.15.4. For verifying the performance of the proposed improved adaptive smoothing filter, actual experiments are conducted in three indoor locations of different spatial sections. From the experimental results, it is verified that the proposed technique is superior to other techniques in range measurement.

Environment Adaptive Sound Localization for Multi-Channel Surround Sound System

  • Lee, Yoon Bae;Mariappan, Vinayagam;Cho, Juphil;Lee, Seon Hee
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.21-25
    • /
    • 2016
  • Recent development in multi-channel surround is emerging in various formats to provide better stereoscopic and sound effects to consumers in recent broadcasting. The ability sound localize the sound sources in space is most considerable design factor on multi-channel surround system for human earing perception model. However, this paper propose the change of the sound localization according to the spacing of the speakers, which is not covered in the existing research focus on sound system design. Presently the sound system uses the position and number of the speakers to localize the sound. In the multi-channel surround environment, the proposed design uses the sound localization is caused by the directional characteristics of the speaker, the distance between the speakers and the distance between the listener and the speaker according to the directivity is required. The proposed design is simulated using virtual measurement with MATLAB simulation environment and performances are measured.

Multi-constrained optimization combining ARMAX with differential search for damage assessment

  • K, Lakshmi;A, Rama Mohan Rao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.689-712
    • /
    • 2019
  • Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.

Study on the Simultaneous Control of the Seam tracking and Leg Length in a Horizontal Fillet Welding Part 1: Analysis and Measurement of the Weld Bend Geometry

  • Moon, H.S.;Na, S.J.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2001
  • Among the various welding conditions, the welding current that is inversely proportional to the tip-to-work-piece distance is an essential parameter as to monitor the GMAW process and to implement the welding automation. Considering the weld pool surface geometry including weld defects, it should modify the signal processing method for automatic seam tracking in horizontal fillet welding. To meet the above necessities, a mathematical model related with the weld pool geometry was proposed as in a conjunction with the two-dimensional heat flow analysis of the horizontal fillet welding. The signal processing method based on the artificial neural network (Adaptive Resonance Theory) was proposed for discriminating the sound weld pool surface from that with the weld defects. The reliability of the numerical model and the signal processing method proposed were evaluated through the experiments of which showed that they are effective for predicting the weld bead shape with or without the weld defects in a horizontal fillet welding.

  • PDF

UKF Localization of a Mobile Robot in an Indoor Environment and Performance Evaluation (실내 이동로봇의 UKF 위치 추정 및 성능 평가)

  • Han, Jun Hee;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.361-368
    • /
    • 2015
  • This paper reports an unscented Kalman filter approach for localization of a mobile robot in an indoor environment. The method proposes a new model of measurement uncertainty which adjusts the error covariance according to the measured distance. The method also uses non-zero off diagonal values in error covariance matrices of motion uncertainty and measurement uncertainty. The method is tested through experiments in an indoor environment of 100*40 m working space using a differential drive robot which uses Laser range finder as an exteroceptive sensor. The results compare the localization performance of the proposed method with the conventional method which doesn't use adaptive measurement uncertainty model. Also, the experiment verifies the improvement due to non-zero off diagonal elements in covariance matrices. This paper contributes to implementing and evaluating a practical UKF approach for mobile robot localization.

Building a Traffic Accident Frequency Prediction Model at Unsignalized Intersections in Urban Areas by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 도시부 비신호교차로 교통사고예측모형 구축)

  • Kim, Kyung Whan;Kang, Jung Hyun;Kang, Jong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.137-145
    • /
    • 2012
  • According to the National Police Agency, the total number of traffic accidents which occurred in 2010 was 226,878. Intersection accidents accounts for 44.8%, the largest portion of the entire traffic accidents. An research on the signalized intersection is constantly made, while an research on the unsignalized intersection is yet insufficient. This study selected traffic volume, road width, and sight distance as the input variables which affect unsignalized intersection accidents, and number of accidents as the output variable to build a model using ANFIS(Adaptive Neuro-Fuzzy Inference System). The forecast performance of this model is evaluated by comparing the actual measurement value with the forecasted value. The compatibility is evaluated by R2, the coefficient of determination, along with Mean Absolute Error (MAE) and Mean Square Error (MSE), the indicators which represent the degree of error and distribution. The result shows that the $R^2$ is 0.9817, while MAE and MSE are 0.4773 and 0.3037 respectively, which means that the explanatory power of the model is quite decent. This study is expected to provide the basic data for establishment of safety measure for unsignalized intersection and the improvement of traffic accidents.

Analysis and signal stability measurement for DGPS radio wave propagation (DGPS 전파 신호의 안정도 측정 및 분석)

  • Kim, Young-wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.231-236
    • /
    • 2016
  • The stability of DGPS signal in the DGPS service area was measured and the service availability according to the receiving signal strength was analyzed in this paper. Based on the effects of radio wave propagation in the seasons of winter and summer, daytime and night, the method to provide the DGPS service coverage was presented in this paper. The signal's strength of DGPS radio wave were measured at a constant distance from the DGPS reference station during a constant period. The propagation of DGPS radio wave is affected by status of ground conductivity, so the DGPS service area is dependant on the ground conductivity. To provide the stable service coverage, it is necessary to apply the adaptive power control for receiving signal's variations and the antenna design for alleviation of high elevation's radiation.