• 제목/요약/키워드: Adaptive Design of Experiment

검색결과 92건 처리시간 0.023초

공압 서보실린더의 신경회로망 결합형 적응제어 (Adaptive Control Incorporating Neural Network for a Pneumatic Servo Cylinder)

  • 장윤성;조승호
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.88-95
    • /
    • 2005
  • This paper presents a design scheme of model reference adaptive control incorporating a Neural Network for a pneumatic servo system. The parameters of discrete-time model of plant are estimated by using the recursive least square method. Neural Network is utilized in order to compensate the nonlinear nature of plant such as compressibility of air and frictions present in cylinder. The experiment of a trajectory tracking control using the proposed control scheme has been performed and its effectiveness has been proved by comparing with the results of a model reference adaptive control.

타여자직류기의 속도제어를 위한 강인 적응 백스테핑 제어기 설계 (Design of Robust Adaptive Backstepping Controller for Speed Control of Separately Excited DC Motor)

  • 현근호;손인환
    • 전기학회논문지P
    • /
    • 제54권2호
    • /
    • pp.80-88
    • /
    • 2005
  • In this paper, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor with uncertainties and disturbances. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation and experiment results are provided to demonstrate the effectiveness of the proposed controller.

Effect of Initial (Reference) Welding Current for Adaptive Control and It's Optimization to Secure Proper Weld Properties in Resistance Spot Welding

  • Ashadudzzaman, Md.;Choi, Il-Dong;Kim, Jae-Won;Nam, Dae-Geun;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • 제33권6호
    • /
    • pp.13-20
    • /
    • 2015
  • Many automotive companies are endeavoring to improve the quality of resistance spot welding by updating body-in-white (BIW) production line with adaptive control spot welding system to compensate the process disturbances such as gap, electrode wear, oxidized surfaces, poor fit up and adhesive etc. Most of the commercial adaptive weld controllers require proper "Initial Welding Schedule" or "Reference weld" to achieve compensation in welding parameters during real time welding. In this study, the compensation of a commercial adaptive weld controller had been observed and analyzed thoroughly for various process disturbances to find optimal initial welding schedule. It was observed that 90 percent of the expulsion current in constant current control as reference welding schedule conferred the maximum button diameter in adaptive control welding. Finally, effects of each disturbance in combined field disturbances system with adaptive control had also been confirmed with the design of experiment (DOE) by minitab(R)16 for combined disturbances situation and suitability of optimum initial weld current had also established with real body part validation test.

Design of a Digital Adaptive Flight Control Law for the ALFLEX

  • Ito, Hideya;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.519-524
    • /
    • 2003
  • In this report, a longitudinal adaptive flight control law is presented for the automatic landing system of a Japanese automatic landing flight experiment vehicle (ALFLEX). The longitudinal adaptive flight control law is designed to track an output of the vehicle to a guidance signal from the guidance portion of the automatic landing system. The proposed adaptive control law in the attitude control portion adjusts the controller gains continuously online as flight conditions change, in spite of the existence of unmodeled dynamics. The number of the controller gains to be adjusted is decreased to 1/2 from the previous studies. Computer simulation involving six-degree-of-freedom (DOF) nonlinear flight dynamics is performed to examine the effectiveness of the proposed adaptive control law. In order to verify the influence of the dispersion of the initial conditions, the Monte Carlo simulation is also applied. The initial conditions are more widely dispersed than the previous studies. As a result, except under the unsuitable initial conditions, the ALFLEX successfully landed on the runway.

  • PDF

TMS320C30칩을 사용한 산업용 로봇의 적응-신경제어기 설계 (The Adaptive-Neuro Controller Design of Industrial Robot Using TMS320C3X Chip)

  • 하석흥
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.162-169
    • /
    • 1999
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital Signal Processors. Digital signal processors DSPs. are micro-processors that are particularly developed for variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a biable computatinal tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for implementation of real-time control of robot system by the simulation and experiment.

  • PDF

지능구조물 제어를 위한 적응형 PPF 제어기의 개발 (Development of the Adaptive PPF Controller for the Vibration Syppression of Smart Structures)

  • 이승범;허석;곽문규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.302-307
    • /
    • 2001
  • This research is concerned with the development of a real-time adaptive PPF controller for the active vibration suppression of smart structure. In general, the tuning of the PPF controller is carried out off-line. In this research, the real-time learning algorithm is developed to find the optimal filter frequency of the PPF controller in real time and the efficacy of the algorithm is proved by implementing it in real time. To this end, the adaptive algorithm is developed by applying the gradient descent method to the predefined performance index, which is similar to the method used popularly in the optimization and neural network controller design. The experiment was carried out to verify the validity of the adaptive PPF controller developed in this research. The experimental results showed that adaptive PPF controller is effective for active vibration control of the structure which is excited by either impact or harmonic disturbance. The filter frequency of the PPF controller can be tuned in a very short period of time thus proving the efficiency of the adaptive PPF controller.

  • PDF

적응형 PPF 제어기를 이용한 지능구조물의 실시간 능동진동제어 (Real-time Active Vibration Control of Smart Structure Using Adaptive PPF Controller)

  • 허석;이승범;곽문규;백광현
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.267-275
    • /
    • 2004
  • This research is concerned with the development of a real-time adaptive PPF controller for the active vibration suppression of smart structure. In general, the tuning of the PPF controller is carried out off-line. In this research, the real-time learning algorithm is developed to find the optimal filter frequency of the PPF controller in real time and the efficacy of the algorithm is proved by implementing it in real time. To this end, the adaptive algorithm is developed by applying the gradient descent method to the predefined performance index, which is similar to the method used popularly in the optimization and neural network controller design. The experiment was carried out to verify the validity of the adaptive PPF controller developed in this research. The experimental results showed that adaptive PPF controller is effective for active vibration control of the structure which is excited by either impact or harmonic disturbance. The filter frequency of the PPF controller is tuned in a very short period of time thus proving the efficiency of the adaptive PPF controller.

실험비용을 고려한 적응적 실험설계법 기반 KF-16 피칭모멘트계수 모델링 (Pitching Moment Coefficient Modeling of KF-16 using Adaptive Design of Experiments with cost consideration)

  • 이돈구;진현;안재명;이영빈
    • 한국항공우주학회지
    • /
    • 제44권6호
    • /
    • pp.537-543
    • /
    • 2016
  • KF-16의 1/33 축소 모형 공력 데이터베이스를 기반으로 풍동실험에 적응적 실험설계법을 적용하는 경우 실험의 정확도뿐만 아니라 풍동 실험에 소요되는 비용을 최소화할 수 있도록 추가 실험점 선택 방법에 대한 연구를 수행하였다. 라틴방격법을 이용하여 초기실험점을 선택하였고, Gaussian Process를 통해 불확실성이 가장 크면서도 실험에 소요되는 비용이 상대적으로 적은 추가 실험점을 선택하였다. 공력계수 모델링은 가장 비선형성이 큰 피칭모멘트계수를 정확히 모델링 하는 것을 목표로 하였다. 실험 비용을 고려한 적응적 실험설계법을 적용한 경우, 기존의 적응적 실험설계 방법론에 비해 모델의 정확도와 실험에 소요되는 비용에 어떤 영향을 미치는지 알아보았다.

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • 제11권3호
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.

3D 크레인 시스템 적응제어에 관한 연구 : 실시간 시뮬레이터 구현 (A Study on Adaptive Control of 3D Crane Systems : Implementation of a Real-time Simulator)

  • 송창환;조현철;이진우;이영진;이권순
    • 동력기계공학회지
    • /
    • 제12권6호
    • /
    • pp.36-41
    • /
    • 2008
  • A crane is very important mechanical systems in industrial applications to move huge objects. Especially, in marine port terminals, it is used to place container boxes at desired position within given operating time. However, such system is faced with environmental disturbance such as wind from the sea, thus crane control system is required to cope with this nature. This paper proposed robust and adaptive control algorithm of a complicated 3D crane against the environmental disturbance. We simplify a mathematical design procedure to derive our control algorithm. We conduct real-time experiment using a crane simulator to evaluate its superiority and reliability.

  • PDF