• Title/Summary/Keyword: Adaptive Classifier

Search Result 111, Processing Time 0.019 seconds

FMMN-based Neuro-Fuzzy Classifier and Its Application (FMMN 기반 뉴로-퍼지 분류기와 응용)

  • 곽근창;전명근;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.259-262
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian menbership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

Evolutionary Neural Network based on Quantum Elephant Herding Algorithm for Modulation Recognition in Impulse Noise

  • Gao, Hongyuan;Wang, Shihao;Su, Yumeng;Sun, Helin;Zhang, Zhiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2356-2376
    • /
    • 2021
  • In this paper, we proposed a novel modulation recognition method based on quantum elephant herding algorithm (QEHA) evolving neural network under impulse noise environment. We use the adaptive weight myriad filter to preprocess the received digital modulation signals which passing through the impulsive noise channel, and then the instantaneous characteristics and high order cumulant features of digital modulation signals are extracted as classification feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm and quantum computing mechanism, we design a quantum elephant herding algorithm (QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem that traditional BPNN is easy into local minimum values and poor robustness. The experimental results prove that the adaptive weight myriad filter we used can remove the impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition performance than other conventional pattern recognition classifiers. Compared with other global optimization algorithms, the QEHA designed in this paper has a faster convergence speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been considered, which can satisfy the need for engineering.

A Fast and Robust License Plate Detection Algorithm Based on Two-stage Cascade AdaBoost

  • Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3490-3507
    • /
    • 2014
  • License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.

Development of Adaptive Signal Pattern Recognition Program and Application to Classification of Defects in Weld Zone by AE Method (적응형 신호 형상 인식 프로그램 개발과 AE법에 의한 용접부 결함 분류에 관한 적용 연구)

  • Lee, K.Y.;Lim, J.M.;Kim, J.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.34-45
    • /
    • 1996
  • The signal pattern recognition program which can perform signal acquisition and processing, the extraction and selection of features, the classifier design and the evaluation, is developed and applied to the classification of artificial defects in the weld zone of Austenitic STS304. The neural network classifier is compared with the linear discriminant function classifier and the empirical Bayesian classifier. The signal through a broadband sensor is compared with that through a resonance type sensor. In recognition rate, the neural network classifier is best, and the signal through a broadband sensor is better.

  • PDF

Development of Polynomial Based Response Surface Approximations Using Classifier Systems (분류시스템을 이용한 다항식기반 반응표면 근사화 모델링)

  • 이종수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF

Video classifier with adaptive blur network to determine horizontally extrapolatable video content (적응형 블러 기반 비디오의 수평적 확장 여부 판별 네트워크)

  • Minsun Kim;Changwook Seo;Hyun Ho Yun;Junyong Noh
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.99-107
    • /
    • 2024
  • While the demand for extrapolating video content horizontally or vertically is increasing, even the most advanced techniques cannot successfully extrapolate all videos. Therefore, it is important to determine if a given video can be well extrapolated before attempting the actual extrapolation. This can help avoid wasting computing resources. This paper proposes a video classifier that can identify if a video is suitable for horizontal extrapolation. The classifier utilizes optical flow and an adaptive Gaussian blur network, which can be applied to flow-based video extrapolation methods. The labeling for training was rigorously conducted through user tests and quantitative evaluations. As a result of learning from this labeled dataset, a network was developed to determine the extrapolation capability of a given video. The proposed classifier achieved much more accurate classification performance than methods that simply use the original video or fixed blur alone by effectively capturing the characteristics of the video through optical flow and adaptive Gaussian blur network. This classifier can be utilized in various fields in conjunction with automatic video extrapolation techniques for immersive viewing experiences.

A novel heuristic for handover priority in mobile heterogeneous networks based on a multimodule Takagi-Sugeno-Kang fuzzy system

  • Zhang, Fuqi;Xiao, Pingping;Liu, Yujia
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.560-572
    • /
    • 2022
  • H2RDC (heuristic handover based on RCC-DTSK-C), a heuristic algorithm based on a highly interpretable deep Takagi-Sugeno-Kang fuzzy classifier, is proposed for suppressing the mobile heterogeneous networks problem of frequent handover and handover ping-pong in the multibase-station scenario. This classifier uses a stack structure between subsystems to form a deep classifier before generating a base station (BS) priority sequence during the handover process, and adaptive handover hysteresis is calculated. Simulation results show that H2RDC allows user equipment to switch to the best antenna at the optimal time. In high-BS density load and mobility scenarios, the proposed algorithm's handover success rate is similar to those of classic algorithms such as best connection (BC), self tuning handover algorithm (STHA), and heuristic for handover based on AHP-TOPSIS-FUZZY (H2ATF). Moreover, the handover rate is 83% lower under H2RDC than under BC, whereas the handover ping-pong rate is 76% lower.

On Adaptive Learning HMM Classifiers Using Splitting-Merging Techniques (분할-합병기법을 이용한 HMM 분류기의 적응학습)

  • 오수환;김상운
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.99-102
    • /
    • 2003
  • In this paper we propose an adaptive learning method for HMM classifiers by using splitting and merging techniques to overcome the problem of the conventional teaming, where one HMM classifier per class has been trained, individually. The experimental results demonstrate a possibility that the proposed mechanism could be applied for applications of having multiple clusters in a class.

  • PDF

Interacting Multiple Model Vehicle-Tracking System Based on Neural Network (신경회로망을 이용한 다중모델 차량추적 시스템)

  • Hwang, Jae-Pil;Park, Seong-Keun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.641-647
    • /
    • 2009
  • In this paper, a new filtering scheme for adaptive cruise control (ACC) system is presented. In the proposed scheme, the identification of the mode of the preceding vehicle is considered as a classification problem and it is done by a neural network classifier. The neural network classifier outputs a posterior probability of the mode of the preceding vehicle and the probability is directly used in the IMM framework. Finally, ten scenarios are made and the proposed NIMM is tested on them to show its validity.

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.