• Title/Summary/Keyword: Adaptive Algorithm

Search Result 4,681, Processing Time 0.026 seconds

Development of GML Map Visualization Service and POI Management Tool using Tagging (GML 지도 가시화 서비스 및 태깅을 이용한 POI 관리 도구 개발)

  • Park, Yong-Jin;Song, Eun-Ha;Jeong, Young-Sik
    • Journal of Internet Computing and Services
    • /
    • v.9 no.3
    • /
    • pp.141-158
    • /
    • 2008
  • In this paper, we developed the GML Map Server which visualized the map based on GML as international standard for exchanging the common format map and for interoperability of GIS information. And also, it should transmit effectively GML map into the mobile device by using dynamic map partition and caching. It manages a partition based on the visualization area of a mobile device in order to visualize the map to a mobile device in real time, and transmits the partition area by serializing it for the benefit of transmission. Also, the received partition area is compounded in a mobile device and is visualized by being partitioned again as four visible areas based on the display of a mobile device. Then, the area is managed by applying a caching algorithm in consideration of repetitiveness for a received map for the efficient operation of resources. Also, in order to prevent the delay in transmission time as regards the instance density area of the map, an adaptive map partition mechanism is proposed for maintaining the regularity of transmission time. GML Map Server can trace the position of mobile device with WIPI environment in this paper. The field emulator can be created mobile devices and mobile devices be moved and traced it's position instead of real-world. And we developed POIM(POI Management) for management hierarchically POI information and for the efficiency POI search by using the individual tagging technology with visual interface.

  • PDF

The Flood Water Stage Prediction based on Neural Networks Method in Stream Gauge Station (하천수위표지점에서 신경망기법을 이용한 홍수위의 예측)

  • Kim, Seong-Won;Salas, Jose-D.
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.247-262
    • /
    • 2000
  • In this paper, the WSANN(Water Stage Analysis with Neural Network) model was presented so as to predict flood water stage at Jindong which has been the major stream gauging station in Nakdong river basin. The WSANN model used the improved backpropagation training algorithm which was complemented by the momentum method, improvement of initial condition and adaptive-learning rate and the data which were used for this study were classified into training and testing data sets. An empirical equation was derived to determine optimal hidden layer node between the hidden layer node and threshold iteration number. And, the calibration of the WSANN model was performed by the four training data sets. As a result of calibration, the WSANN22 and WSANN32 model were selected for the optimal models which would be used for model verification. The model verification was carried out so as to evaluate model fitness with the two-untrained testing data sets. And, flood water stages were reasonably predicted through the results of statistical analysis. As results of this study, further research activities are needed for the construction of a real-time warning of the impending flood and for the control of flood water stage with neural network method in river basin. basin.

  • PDF

A study of Vertical Handover between LTE and Wireless LAN Systems using Adaptive Fuzzy Logic Control and Policy based Multiple Criteria Decision Making Method (LTE/WLAN 이종망 환경에서 퍼지제어와 정책적 다기준 의사결정법을 이용한 적응적 VHO 방안 연구)

  • Lee, In-Hwan;Kim, Tae-Sub;Cho, Sung-Ho
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.271-280
    • /
    • 2010
  • For the next generation mobile communication system, diverse wireless network techniques such as beyond 3G LTE, WiMAX/WiBro, and next generation WLAN etc. are proceeding to the form integrated into the All-IP core network. According to this development, Beyond 3G integrated into heterogeneous wireless access technologies must support the vertical handover and network to be used of several radio networks. However, unified management of each network is demanded since it is individually serviced. Therefore, in order to solve this problem this study is introducing the theory of Common Radio Resource Management (CRRM) based on Generic Link Layer (GLL). This study designs the structure and functions to support the vertical handover and propose the vertical handover algorithm of which policy-based and MCDM are composed between LTE and WLAN systems using GLL. Finally, simulation results are presented to show the improved performance over the data throughput, handover success rate, the system service cost and handover attempt number.

News Video Shot Boundary Detection using Singular Value Decomposition and Incremental Clustering (특이값 분해와 점증적 클러스터링을 이용한 뉴스 비디오 샷 경계 탐지)

  • Lee, Han-Sung;Im, Young-Hee;Park, Dai-Hee;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.169-177
    • /
    • 2009
  • In this paper, we propose a new shot boundary detection method which is optimized for news video story parsing. This new news shot boundary detection method was designed to satisfy all the following requirements: 1) minimizing the incorrect data in data set for anchor shot detection by improving the recall ratio 2) detecting abrupt cuts and gradual transitions with one single algorithm so as to divide news video into shots with one scan of data set; 3) classifying shots into static or dynamic, therefore, reducing the search space for the subsequent stage of anchor shot detection. The proposed method, based on singular value decomposition with incremental clustering and mercer kernel, has additional desirable features. Applying singular value decomposition, the noise or trivial variations in the video sequence are removed. Therefore, the separability is improved. Mercer kernel improves the possibility of detection of shots which is not separable in input space by mapping data to high dimensional feature space. The experimental results illustrated the superiority of the proposed method with respect to recall criteria and search space reduction for anchor shot detection.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Multi-Level Sequence Alignment : An Adaptive Control Method Between Speed and Accuracy for Document Comparison (계산속도 및 정확도의 적응적 제어가 가능한 다단계 문서 비교 시스템)

  • Seo, Jong-Kyu;Tak, Haesung;Cho, Hwan-Gue
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.728-743
    • /
    • 2014
  • Finger printing and sequence alignment are well-known approaches for document similarity comparison. A fingerprinting method is simple and fast, but it can not find particular similar regions. A string alignment method is used for identifying regions of similarity by arranging the sequences of a string. It has an advantage of finding particular similar regions, but it also has a disadvantage of taking more computing time. The Multi-Level Alignment (MLA) is a new method designed for taking the advantages of both methods. The MLA divides input documents into uniform length blocks, and then extracts fingerprints from each block and calculates similarity of block pairs by comparing the fingerprints. A similarity table is created in this process. Finally, sequence alignment is used for specifying longest similar regions in the similarity table. The MLA allows users to change block's size to control proportion of the fingerprint algorithm and the sequence alignment. As a document is divided into several blocks, similar regions are also fragmented into two or more blocks. To solve this fragmentation problem, we proposed a united block method. Experimentally, we show that computing document's similarity with the united block is more accurate than the original MLA method, with minor time loss.

A Hybrid Knowledge Representation Method for Pedagogical Content Knowledge (교수내용지식을 위한 하이브리드 지식 표현 기법)

  • Kim, Yong-Beom;Oh, Pill-Wo;Kim, Yung-Sik
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.369-386
    • /
    • 2005
  • Although Intelligent Tutoring System(ITS) offers individualized learning environment that overcome limited function of existent CAI, and consider many learners' variable, there is little development to be using at the sites of schools because of inefficiency of investment and absence of pedagogical content knowledge representation techniques. To solve these problem, we should study a method, which represents knowledge for ITS, and which reuses knowledge base. On the pedagogical content knowledge, the knowledge in education differs from knowledge in a general sense. In this paper, we shall primarily address the multi-complex structure of knowledge and explanation of learning vein using multi-complex structure. Multi-Complex, which is organized into nodes, clusters and uses by knowledge base. In addition, it grows a adaptive knowledge base by self-learning. Therefore, in this paper, we propose the 'Extended Neural Logic Network(X-Neuronet)', which is based on Neural Logic Network with logical inference and topological inflexibility in cognition structure, and includes pedagogical content knowledge and object-oriented conception, verify validity. X-Neuronet defines that a knowledge is directive combination with inertia and weights, and offers basic conceptions for expression, logic operator for operation and processing, node value and connection weight, propagation rule, learning algorithm.

  • PDF

Hierarchical Feature Based Block Motion Estimation for Ultrasound Image Sequences (초음파 영상을 위한 계층적 특징점 기반 블록 움직임 추출)

  • Kim, Baek-Sop;Shin, Seong-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.402-410
    • /
    • 2006
  • This paper presents a method for feature based block motion estimation that uses multi -resolution image sequences to obtain the panoramic images in the continuous ultrasound image sequences. In the conventional block motion estimation method, the centers of motion estimation blocks are set at the predetermined and equally spaced locations. This requires the large blocks to include at least one feature, which inevitably requires long estimation time. In this paper, we propose an adaptive method which locates the center of the motion estimation blocks at the feature points. This make it possible to reduce the block size while keeping the motion estimation accuracy The Harris-Stephen corner detector is used to get the feature points. The comer points tend to group together, which cause the error in the global motion estimation. In order to distribute the feature points as evenly as Possible, the image is firstly divided into regular subregions, and a strongest corner point is selected as a feature in each subregion. The ultrasound Images contain speckle patterns and noise. In order to reduce the noise artifact and reduce the computational time, the proposed method use the multi-resolution image sequences. The first algorithm estimates the motion in the smoothed low resolution image, and the estimated motion is prolongated to the next higher resolution image. By this way the size of search region can be reduced in the higher resolution image. Experiments were performed on three types of ultrasound image sequences. These were shown that the proposed method reduces both the computational time (from 77ms to 44ms) and the displaced frame difference (from 66.02 to 58.08).

Implementation of the Agent using Universal On-line Q-learning by Balancing Exploration and Exploitation in Reinforcement Learning (강화 학습에서의 탐색과 이용의 균형을 통한 범용적 온라인 Q-학습이 적용된 에이전트의 구현)

  • 박찬건;양성봉
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.672-680
    • /
    • 2003
  • A shopbot is a software agent whose goal is to maximize buyer´s satisfaction through automatically gathering the price and quality information of goods as well as the services from on-line sellers. In the response to shopbots´ activities, sellers on the Internet need the agents called pricebots that can help them maximize their own profits. In this paper we adopts Q-learning, one of the model-free reinforcement learning methods as a price-setting algorithm of pricebots. A Q-learned agent increases profitability and eliminates the cyclic price wars when compared with the agents using the myoptimal (myopically optimal) pricing strategy Q-teaming needs to select a sequence of state-action fairs for the convergence of Q-teaming. When the uniform random method in selecting state-action pairs is used, the number of accesses to the Q-tables to obtain the optimal Q-values is quite large. Therefore, it is not appropriate for universal on-line learning in a real world environment. This phenomenon occurs because the uniform random selection reflects the uncertainty of exploitation for the optimal policy. In this paper, we propose a Mixed Nonstationary Policy (MNP), which consists of both the auxiliary Markov process and the original Markov process. MNP tries to keep balance of exploration and exploitation in reinforcement learning. Our experiment results show that the Q-learning agent using MNP converges to the optimal Q-values about 2.6 time faster than the uniform random selection on the average.

Enhanced Mode Estimation Method for Intra/Inter Prediction in H.264/AVC (H.264/AVC에서 향상된 인트라/인터 예측을 위한 모드 추정 방법)

  • Park, Kyung-Seok;Kim, Min-Jun;Jun, Jae-Hyun;Ryu, Sang-Ryul;Kim, Snng-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1830-1838
    • /
    • 2012
  • The intra prediction and the motion estimation of inter prediction occupy 70 ~ 80% of whole compression time in H.264/AVC. Compression efficiency has been higher, but complexity has increased and coding time has also increased much more. This paper proposes a block size decision method of the intra prediction and mode decision method which minimize the loss of video quality during the encoding and shorten the time spent. This paper, in addition, proposes an algorithm which determines the method of adaptive block mode for motion estimation of inter prediction. We investigated PSNR and the intra prediction and inter prediction of time-consuming calculations in order to measure video quality degradation and complexity through experiments. Consequently, when you use all three methods, these methods showed that average coding time is shortened as about 500 to 600ms in every frame in the case of all experimented videos, keeping video quality nearly similar, compared with existing methods of H.264.