본 논문은 AdaBoost(Adaptive Boosting)알고리즘을 이용한 실시간 얼굴 검출 및 추적에 패한 기법을 제안한다. 얼굴 검출은 8종류의 간단한 웨이블릿 특징 모형을 이용한다. 각각의 특징들은 $20{\times}20$의 훈련 영상에서 다양한 크기와 위치로 배치되어 초기의 특징 집합을 구성한다. 초기의 특징 집합과 훈련 영상은 AdaBoost알고리즘의 입력으로 사용된다. AdaBoost알고리즘의 기본원리는 약한 분류기를 선형적으로 결합하여 최종적으로는 계층적 구조를 갖는 강한 분류기론 생성하는 것이다. 본 논문에서는 AdaBoost알고리즘에서 훈련 영상과 초기의 특징 집합 간에 이루어지는 반복적 계산량을 줄이기 위해 SAT(Summed-Area Table) 기법을 이용하였다. 얼굴 추적은 Pan-Tilt카메라를 통해 동적으로 가시 영역을 확장해 가면서 검출된 영역의 위치와 크기정보를 이용하여 실시간으로 이루어진다. 검출된 얼굴 영역의 중심을 전체 영상의 중심으로 이동하는 방법을 사용하였다. 실험결과 92.5%의 얼굴 검출율과 평균 12프레임의 얼굴 추적속도를 얻었다.
Face Detection is an essential first step of the face recognition, and this is significant effects on face feature extraction and the effects of face recognition. Face detection has extensive research value and significance. In this paper, we present and analysis the principle, merits and demerits of the classic AdaBoost face detection and ASM algorithm based on point distribution model, which ASM solves the problems of face detection based on AdaBoost. First, the implemented scheme uses AdaBoost algorithm to detect original face from input images or video stream. Then, it uses ASM algorithm converges, which fit face region detected by AdaBoost to detect faces more accurately. Finally, it cuts out the specified size of the facial region on the basis of the positioning coordinates of eyes. The experimental result shows that the method can detect face rapidly and precisely, with a strong robustness.
AdaBoost 알고리즘을 이용한 얼굴 검출 방법은 가장 빠르고 신뢰성 있는 얼굴 검출 알고리즘의 하나로 이를 향상하거나 확장한 많은 알고리즘들이 제안되었다. 그러나 이전의 접근들은 대부분 정면 얼굴만을 다루고 있고 AdaBoot 알고리즘을 정면과 기울어진 얼굴에 동일한 특징으로 적용함으로써 기울어진 얼굴에 대한 분별 성능이 제한적이었다. 또한 회전된 얼굴을 검출하기 위하여 입력된 영상을 회전하여 정면 얼굴 검출 방법을 적용하거나 회전된 각도에 따라 다른 검출기를 적용하는 기존 기법들은 연산량이 많고 검출률이 저하되는 문제를 가지고 있다. 본 논문에서는 이러한 문제를 극복하기 위해 JointBoost를 이용한 기울어진 얼굴 검출 방법을 제안한다. JointBoost를 통해 클래스간의 공유된 feature들를 찾음으로써 연산량과 샘플 복잡도를 감소시켰다. 실험 결과를 통해 제안된 방법의 검출률이 동일한 반복 횟수를 가지는 학습에서 기존의 AdaBoost 기법에 비해 2% 이상 우수함을 보인다. 또한 제안된 방법은 얼굴의 존재를 검출할 뿐만 아니라 기울어진 방향에 대한 정보도 제공할 수 있다.
Terrain classification is still a challenging issue in image processing, especially with high resolution satellite images. The well-known obstacles include low accuracy in the detection of targets, especially for the case of man-made structures, such as buildings and roads. In this paper, we present an efficient approach to classify and detect building footprints, foliage, grass and road from high resolution grayscale satellite images. Our contribution is to build a strong classifier using AdaBoost based on a combination of co-occurrence and Haar-like features. We expect that the inclusion of Harr-like feature improves the classification performance of the man-made structures, since Haar-like feature is extracted from corner features and rectangle features. Also, the AdaBoost algorithm selects only critical features and generates an extremely efficient classifier. Experimental result indicates that the classification accuracy of AdaBoost classifier is much higher than that of the conventional classifier using back propagation algorithm. Also, the inclusion of Harr-like feature significantly improves the classification accuracy. The accuracy of the proposed method is 98.4% for the target detection and 92.8% for the classification on high resolution satellite images.
회전된 얼굴 검출은 많은 응용 분야에서 필요하지만 회전에 따른 얼굴 모양의 큰 변화로 인해 여전히 어려운 분야이다. 이 논문에서는 회전의 영향을 받지 않는 극좌표 변환 방법과 변환된 영상을 이용하여 회전얼굴을 효과적으로 검출하는 방법이 제안되었다. 제안한 극좌표계 변환 방법은 회전 각도와 무관하게 눈, 입 등과 같은 얼굴 구성 요소들의 위치가 항상 유지되기 때문에 얼굴 구성요소들 간의 공간 정보가 유지되며, 이로 인해 회전 효과가 제거된다. 극좌표계 변환된 영상을 정면 얼굴 검출에 사용되는 AdaBoost를 이용하여 학습하고 회전 얼굴을 검출하였다. 비얼굴 영상을 LBP를 이용하여 학습하고 검출한 얼굴을 검증하였다. BioID 데이터베이스에 있는 영상을 회전하여 얻은 3600개 얼굴영상에 대한 실험 결과 96.17%의 회전얼굴 검출률을 얻었다. 또한, 다수의 회전 얼굴이 포함된 배경이 있는 영상에서 회전 얼굴들을 정확하게 검출하였다.
본 논문에서는 얼굴영상에 나타난 사람의 표정을 인식하기 위해 얼굴검출, 얼굴정렬, 얼굴단위 추출, 그리고 AdaBoost를 이용한 학습 방법과 효과적인 인식방법을 제안한다. 입력영상에서 얼굴 영역을 찾기 위해서 얼굴검출을 수행하고, 검출된 얼굴영상에 대하여 학습된 얼굴모델과 정렬(Face Alignment)을 수행한 후, 얼굴의 표정을 나타내는 단위요소(Facial Units)들을 추출한다. 본 논문에서 제안하는 얼굴 단위요소들을 표정을 표현하기 위한 기본적인 액션유닛(AU, Action Units)의 하위집합으로 눈썹, 눈, 코, 입 부분으로 나눠지며, 이러한 액션유닛에 대하여 AdaBoost 학습을 수행하여 표정을 인식한다. 얼굴유닛은 얼굴표정을 더욱 효율적으로 표현할 수 있고 학습 및 테스트에서 동작하는 시간을 줄여주기 때문에 실시간 응용분야에 적용하기 적합하다. 실험결과, 제안하는 표정인식 시스템은 실시간 환경에서 90% 이상의 우수한 성능을 보여준다.
This paper presents a method for real-time face detection and tracking which combined Adaboost and Camshift algorithm. Adaboost algorithm is a method which selects an important feature called weak classifier among many possible image features by tuning weight of each feature from learning candidates. Even though excellent performance extracting the object, computing time of the algorithm is very high with window size of multi-scale to search image region. So direct application of the method is not easy for real-time tasks such as multi-task OS, robot, and mobile environment. But CAMshift method is an improvement of Mean-shift algorithm for the video streaming environment and track the interesting object at high speed based on hue value of the target region. The detection efficiency of the method is not good for environment of dynamic illumination. We propose a combined method of Adaboost and CAMshift to improve the computing speed with good face detection performance. The method was proved for real image sequences including single and more faces.
최근 들어 바이모달 인식에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 음성 정보와 얼굴정보를 이용하여 바이모달 시스템을 구현하였다. 얼굴인식은 얼굴 검출과 얼굴 인식 두 부분으로 나누어서 실험을 하였다. 얼굴 검출 단계에서는 AdaBoost를 이용하여 얼굴 후보 영역을 검출 한 뒤 PCA를 통해 특징 벡터 계수를 줄였다. PCA를 통해 추출된 특징 벡터를 객체 분류 기법인 SVM을 이용하여 얼굴을 검출 및 인식하였다. 음성인식은 MFCC를 이용하여 음성 특징 추출을 하였으며 HMM을 이용하여 음성인식을 하였다. 인식결과, 단일 인식을 사용하는 것보다 얼굴과 음성을 같이 사용하였을 때 인식률의 향상을 가져왔고, 잡음 환경에서는 더욱 높은 성능을 나타냈었다.
본 논문에서는 웹카메라 영상과 같은 저해상도의 동영상으로부터 실시간으로 다중 얼굴을 검출할 수 있는 시스템을 제안한다. 본 논문에서는 먼저 영상내의 거대한 특징 집합으로부터 중요한 작은 특징 집합을 선택하는 AdaBoost 기반 객체 검출 방법을 사용하여 얼굴 후보 영역을 검출한다. 검출된 얼굴 후보 영역에 대한 주성분 분석을 수행함으로써 데이터의 크기가 현저히 줄어든 특징 벡터를 구한다. 그 다음에는 특징 벡터에 대해 SVM 기반 이진분류를 수행하여 후보 영역의 영상이 얼굴인지 아닌지를 판별한다. 실험결과에 의하면, 본 논문에서 제안한 방법은 저해상도 동영상에서 실시간 처리가 가능한 다중 얼굴 검출 성능을 보였고, 주성분분석과 SVM을 이용한 얼굴 검증 과정을 통해 얼굴 검출의 정확도를 향상 시켰다.
본 논문은 동영상에서 실시간 얼굴검출을 위하여 Residual Image 검출과 색상정보를 이용한 얼굴검출 기법을 제안하였다. 제안된 기법은 동영상에서 빠른 처리 속도와 높은 얼굴 검출율을 나타냈으며 기울어진 얼굴영상에 대한 보정작업을 통하여 검출 에러율을 줄였다. 실시간으로 전송된 동영상에서 검출의 대상이 되는 정지영상을 추출한다. 추출된 영상은 기울어진 얼굴검출을 위한 window회전 알고리즘을 사용하고 이렇게 보정된 영상은 얼굴 검출에 필요한 특징을 추출하기 위해 AdaBoost알고리즘을 사용하여 실시간으로 얼굴이 검출된 영상을 획득하게 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.