• 제목/요약/키워드: AdaBoost feature detection

검색결과 43건 처리시간 0.022초

AdaBoost 알고리즘을 이용한 실시간 얼굴 검출 및 추적 (Real-Time Face Detection and Tracking Using the AdaBoost Algorithm)

  • 이우주;김진철;이배호
    • 한국멀티미디어학회논문지
    • /
    • 제9권10호
    • /
    • pp.1266-1275
    • /
    • 2006
  • 본 논문은 AdaBoost(Adaptive Boosting)알고리즘을 이용한 실시간 얼굴 검출 및 추적에 패한 기법을 제안한다. 얼굴 검출은 8종류의 간단한 웨이블릿 특징 모형을 이용한다. 각각의 특징들은 $20{\times}20$의 훈련 영상에서 다양한 크기와 위치로 배치되어 초기의 특징 집합을 구성한다. 초기의 특징 집합과 훈련 영상은 AdaBoost알고리즘의 입력으로 사용된다. AdaBoost알고리즘의 기본원리는 약한 분류기를 선형적으로 결합하여 최종적으로는 계층적 구조를 갖는 강한 분류기론 생성하는 것이다. 본 논문에서는 AdaBoost알고리즘에서 훈련 영상과 초기의 특징 집합 간에 이루어지는 반복적 계산량을 줄이기 위해 SAT(Summed-Area Table) 기법을 이용하였다. 얼굴 추적은 Pan-Tilt카메라를 통해 동적으로 가시 영역을 확장해 가면서 검출된 영역의 위치와 크기정보를 이용하여 실시간으로 이루어진다. 검출된 얼굴 영역의 중심을 전체 영상의 중심으로 이동하는 방법을 사용하였다. 실험결과 92.5%의 얼굴 검출율과 평균 12프레임의 얼굴 추적속도를 얻었다.

  • PDF

AdaBoost와 ASM을 활용한 얼굴 검출 (Face Detection using AdaBoost and ASM)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.105-108
    • /
    • 2018
  • Face Detection is an essential first step of the face recognition, and this is significant effects on face feature extraction and the effects of face recognition. Face detection has extensive research value and significance. In this paper, we present and analysis the principle, merits and demerits of the classic AdaBoost face detection and ASM algorithm based on point distribution model, which ASM solves the problems of face detection based on AdaBoost. First, the implemented scheme uses AdaBoost algorithm to detect original face from input images or video stream. Then, it uses ASM algorithm converges, which fit face region detected by AdaBoost to detect faces more accurately. Finally, it cuts out the specified size of the facial region on the basis of the positioning coordinates of eyes. The experimental result shows that the method can detect face rapidly and precisely, with a strong robustness.

JointBoost 알고리즘을 이용한 기울어진 얼굴 검출 (Inclined Face Detection using JointBoost algorithm)

  • 정윤호;송영모;고윤호
    • 한국멀티미디어학회논문지
    • /
    • 제15권5호
    • /
    • pp.606-614
    • /
    • 2012
  • AdaBoost 알고리즘을 이용한 얼굴 검출 방법은 가장 빠르고 신뢰성 있는 얼굴 검출 알고리즘의 하나로 이를 향상하거나 확장한 많은 알고리즘들이 제안되었다. 그러나 이전의 접근들은 대부분 정면 얼굴만을 다루고 있고 AdaBoot 알고리즘을 정면과 기울어진 얼굴에 동일한 특징으로 적용함으로써 기울어진 얼굴에 대한 분별 성능이 제한적이었다. 또한 회전된 얼굴을 검출하기 위하여 입력된 영상을 회전하여 정면 얼굴 검출 방법을 적용하거나 회전된 각도에 따라 다른 검출기를 적용하는 기존 기법들은 연산량이 많고 검출률이 저하되는 문제를 가지고 있다. 본 논문에서는 이러한 문제를 극복하기 위해 JointBoost를 이용한 기울어진 얼굴 검출 방법을 제안한다. JointBoost를 통해 클래스간의 공유된 feature들를 찾음으로써 연산량과 샘플 복잡도를 감소시켰다. 실험 결과를 통해 제안된 방법의 검출률이 동일한 반복 횟수를 가지는 학습에서 기존의 AdaBoost 기법에 비해 2% 이상 우수함을 보인다. 또한 제안된 방법은 얼굴의 존재를 검출할 뿐만 아니라 기울어진 방향에 대한 정보도 제공할 수 있다.

Application of Multi-Class AdaBoost Algorithm to Terrain Classification of Satellite Images

  • Nguyen, Ngoc-Hoa;Woo, Dong-Min
    • 전기전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.536-543
    • /
    • 2014
  • Terrain classification is still a challenging issue in image processing, especially with high resolution satellite images. The well-known obstacles include low accuracy in the detection of targets, especially for the case of man-made structures, such as buildings and roads. In this paper, we present an efficient approach to classify and detect building footprints, foliage, grass and road from high resolution grayscale satellite images. Our contribution is to build a strong classifier using AdaBoost based on a combination of co-occurrence and Haar-like features. We expect that the inclusion of Harr-like feature improves the classification performance of the man-made structures, since Haar-like feature is extracted from corner features and rectangle features. Also, the AdaBoost algorithm selects only critical features and generates an extremely efficient classifier. Experimental result indicates that the classification accuracy of AdaBoost classifier is much higher than that of the conventional classifier using back propagation algorithm. Also, the inclusion of Harr-like feature significantly improves the classification accuracy. The accuracy of the proposed method is 98.4% for the target detection and 92.8% for the classification on high resolution satellite images.

극좌표계 변환과 AdaBoost를 이용한 회전 얼굴 검출 (Rotated Face Detection Using Polar Coordinate Transform and AdaBoost)

  • 장경식
    • 한국정보통신학회논문지
    • /
    • 제25권7호
    • /
    • pp.896-902
    • /
    • 2021
  • 회전된 얼굴 검출은 많은 응용 분야에서 필요하지만 회전에 따른 얼굴 모양의 큰 변화로 인해 여전히 어려운 분야이다. 이 논문에서는 회전의 영향을 받지 않는 극좌표 변환 방법과 변환된 영상을 이용하여 회전얼굴을 효과적으로 검출하는 방법이 제안되었다. 제안한 극좌표계 변환 방법은 회전 각도와 무관하게 눈, 입 등과 같은 얼굴 구성 요소들의 위치가 항상 유지되기 때문에 얼굴 구성요소들 간의 공간 정보가 유지되며, 이로 인해 회전 효과가 제거된다. 극좌표계 변환된 영상을 정면 얼굴 검출에 사용되는 AdaBoost를 이용하여 학습하고 회전 얼굴을 검출하였다. 비얼굴 영상을 LBP를 이용하여 학습하고 검출한 얼굴을 검증하였다. BioID 데이터베이스에 있는 영상을 회전하여 얻은 3600개 얼굴영상에 대한 실험 결과 96.17%의 회전얼굴 검출률을 얻었다. 또한, 다수의 회전 얼굴이 포함된 배경이 있는 영상에서 회전 얼굴들을 정확하게 검출하였다.

얼굴정렬과 AdaBoost를 이용한 얼굴 표정 인식 (Facial Expression Recognition using Face Alignment and AdaBoost)

  • 정경중;최재식;장길진
    • 전자공학회논문지
    • /
    • 제51권11호
    • /
    • pp.193-201
    • /
    • 2014
  • 본 논문에서는 얼굴영상에 나타난 사람의 표정을 인식하기 위해 얼굴검출, 얼굴정렬, 얼굴단위 추출, 그리고 AdaBoost를 이용한 학습 방법과 효과적인 인식방법을 제안한다. 입력영상에서 얼굴 영역을 찾기 위해서 얼굴검출을 수행하고, 검출된 얼굴영상에 대하여 학습된 얼굴모델과 정렬(Face Alignment)을 수행한 후, 얼굴의 표정을 나타내는 단위요소(Facial Units)들을 추출한다. 본 논문에서 제안하는 얼굴 단위요소들을 표정을 표현하기 위한 기본적인 액션유닛(AU, Action Units)의 하위집합으로 눈썹, 눈, 코, 입 부분으로 나눠지며, 이러한 액션유닛에 대하여 AdaBoost 학습을 수행하여 표정을 인식한다. 얼굴유닛은 얼굴표정을 더욱 효율적으로 표현할 수 있고 학습 및 테스트에서 동작하는 시간을 줄여주기 때문에 실시간 응용분야에 적용하기 적합하다. 실험결과, 제안하는 표정인식 시스템은 실시간 환경에서 90% 이상의 우수한 성능을 보여준다.

AdaBoost 기반의 실시간 고속 얼굴검출 및 추적시스템의 개발 (AdaBoost-based Real-Time Face Detection & Tracking System)

  • 김정현;김진영;홍영진;권장우;강동중;노태정
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1074-1081
    • /
    • 2007
  • This paper presents a method for real-time face detection and tracking which combined Adaboost and Camshift algorithm. Adaboost algorithm is a method which selects an important feature called weak classifier among many possible image features by tuning weight of each feature from learning candidates. Even though excellent performance extracting the object, computing time of the algorithm is very high with window size of multi-scale to search image region. So direct application of the method is not easy for real-time tasks such as multi-task OS, robot, and mobile environment. But CAMshift method is an improvement of Mean-shift algorithm for the video streaming environment and track the interesting object at high speed based on hue value of the target region. The detection efficiency of the method is not good for environment of dynamic illumination. We propose a combined method of Adaboost and CAMshift to improve the computing speed with good face detection performance. The method was proved for real image sequences including single and more faces.

얼굴과 음성 정보를 이용한 바이모달 사용자 인식 시스템 설계 및 구현 (Design and Implementation of a Bimodal User Recognition System using Face and Audio)

  • 김명훈;이지근;소인미;정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.353-362
    • /
    • 2005
  • 최근 들어 바이모달 인식에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 음성 정보와 얼굴정보를 이용하여 바이모달 시스템을 구현하였다. 얼굴인식은 얼굴 검출과 얼굴 인식 두 부분으로 나누어서 실험을 하였다. 얼굴 검출 단계에서는 AdaBoost를 이용하여 얼굴 후보 영역을 검출 한 뒤 PCA를 통해 특징 벡터 계수를 줄였다. PCA를 통해 추출된 특징 벡터를 객체 분류 기법인 SVM을 이용하여 얼굴을 검출 및 인식하였다. 음성인식은 MFCC를 이용하여 음성 특징 추출을 하였으며 HMM을 이용하여 음성인식을 하였다. 인식결과, 단일 인식을 사용하는 것보다 얼굴과 음성을 같이 사용하였을 때 인식률의 향상을 가져왔고, 잡음 환경에서는 더욱 높은 성능을 나타냈었다.

  • PDF

실시간 얼굴 검출 시스템 설계 및 구현 (Design and Implementation of a Real-Time Face Detection System)

  • 정성태;이호근
    • 한국멀티미디어학회논문지
    • /
    • 제8권8호
    • /
    • pp.1057-1068
    • /
    • 2005
  • 본 논문에서는 웹카메라 영상과 같은 저해상도의 동영상으로부터 실시간으로 다중 얼굴을 검출할 수 있는 시스템을 제안한다. 본 논문에서는 먼저 영상내의 거대한 특징 집합으로부터 중요한 작은 특징 집합을 선택하는 AdaBoost 기반 객체 검출 방법을 사용하여 얼굴 후보 영역을 검출한다. 검출된 얼굴 후보 영역에 대한 주성분 분석을 수행함으로써 데이터의 크기가 현저히 줄어든 특징 벡터를 구한다. 그 다음에는 특징 벡터에 대해 SVM 기반 이진분류를 수행하여 후보 영역의 영상이 얼굴인지 아닌지를 판별한다. 실험결과에 의하면, 본 논문에서 제안한 방법은 저해상도 동영상에서 실시간 처리가 가능한 다중 얼굴 검출 성능을 보였고, 주성분분석과 SVM을 이용한 얼굴 검증 과정을 통해 얼굴 검출의 정확도를 향상 시켰다.

  • PDF

동영상에서 실시간 얼굴검출에 관한 연구 (A Study on Real-time Face Detection in Video)

  • 김형균;배용근
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.47-53
    • /
    • 2010
  • 본 논문은 동영상에서 실시간 얼굴검출을 위하여 Residual Image 검출과 색상정보를 이용한 얼굴검출 기법을 제안하였다. 제안된 기법은 동영상에서 빠른 처리 속도와 높은 얼굴 검출율을 나타냈으며 기울어진 얼굴영상에 대한 보정작업을 통하여 검출 에러율을 줄였다. 실시간으로 전송된 동영상에서 검출의 대상이 되는 정지영상을 추출한다. 추출된 영상은 기울어진 얼굴검출을 위한 window회전 알고리즘을 사용하고 이렇게 보정된 영상은 얼굴 검출에 필요한 특징을 추출하기 위해 AdaBoost알고리즘을 사용하여 실시간으로 얼굴이 검출된 영상을 획득하게 된다.