• Title/Summary/Keyword: Ad-hoc and Sensor Networks

Search Result 162, Processing Time 0.02 seconds

Ubiquitous u-Health System using RFID & ZigBee (RFID와 ZigBee를 이용한 유비쿼터스 u-Health 시스템 구현)

  • Kim Jin-Tai;Kwon Youngmi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.79-88
    • /
    • 2006
  • In this paper, we designed and implemented ubiquitous u-Health system using RFE and ZigBee. We made a wireless protocol Kit which combines RFE Tag recognition and ZigBee data communication capability. The software is designed and developed on the TinyOS. Wireless communication technologies which hold multi-protocol stacks with RFID and result in the wireless ubiquitous world could be Bluetooth, ZigBee, 802.11x WLAN and so on. The environments that the suggested u-Health system may be used is un-manned nursing, which would be utilized in dense sensor networks such as a hospital. The the size of devices with RFID and ZigBee will be so smaller and smaller as a bracelet, a wrist watch and a ring. The combined wireless RFID-ZigBee system could be applied to applications which requires some actions corresponding to the collected (or sensed) information in WBAN(Wireless Body Area Network) and/or WPAN(Wireless Person Area Network). The proposed ubiquitous u-Health system displays some text-type alert message on LCD which is attached to the system or gives voice alert message to the adequate node users. RFE will be used as various combinations with other wireless technologies for some application-specific purposes.

Reliable multi-hop communication for structural health monitoring

  • Nagayama, Tomonori;Moinzadeh, Parya;Mechitov, Kirill;Ushita, Mitsushi;Makihata, Noritoshi;Ieiri, Masataka;Agha, Gul;Spencer, Billie F. Jr.;Fujino, Yozo;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.481-504
    • /
    • 2010
  • Wireless smart sensor networks (WSSNs) have been proposed by a number of researchers to evaluate the current condition of civil infrastructure, offering improved understanding of dynamic response through dense instrumentation. As focus moves from laboratory testing to full-scale implementation, the need for multi-hop communication to address issues associated with the large size of civil infrastructure and their limited radio power has become apparent. Multi-hop communication protocols allow sensors to cooperate to reliably deliver data between nodes outside of direct communication range. However, application specific requirements, such as high sampling rates, vast amounts of data to be collected, precise internodal synchronization, and reliable communication, are quite challenging to achieve with generic multi-hop communication protocols. This paper proposes two complementary reliable multi-hop communication solutions for monitoring of civil infrastructure. In the first approach, termed herein General Purpose Multi-hop (GPMH), the wide variety of communication patterns involved in structural health monitoring, particularly in decentralized implementations, are acknowledged to develop a flexible and adaptable any-to-any communication protocol. In the second approach, termed herein Single-Sink Multi-hop (SSMH), an efficient many-to-one protocol utilizing all available RF channels is designed to minimize the time required to collect the large amounts of data generated by dense arrays of sensor nodes. Both protocols adopt the Ad-hoc On-demand Distance Vector (AODV) routing protocol, which provides any-to-any routing and multi-cast capability, and supports a broad range of communication patterns. The proposed implementations refine the routing metric by considering the stability of links, exclude functionality unnecessary in mostly-static WSSNs, and integrate a reliable communication layer with the AODV protocol. These customizations have resulted in robust realizations of multi-hop reliable communication that meet the demands of structural health monitoring.