• Title/Summary/Keyword: Acute leukemia

Search Result 447, Processing Time 0.038 seconds

Acute Megakaryoblastic Leukemia (급성 거핵아구성 백혈병 1례)

  • Kim, Young-Jin;Kim, Tae-Nyun;Hyun, Myung-Soo;Shim, Bong-Sup;Lee, Hyun-Woo;Kim, Jung-Suk
    • Journal of Yeungnam Medical Science
    • /
    • v.8 no.2
    • /
    • pp.209-216
    • /
    • 1991
  • Acute Megakaryoblastic leukemia is a rare and rapidly fatal disease characterized by proliferation of megakaryocyte series and atypical megakaryocytes in the bone marrow. Acute Megakaryoblastic leukemia is suspicious when 1) megakaryocyte in peripheral blood, mixture of large and small mononuclear megakaryoblast in the bone marrow 2) cytoplasmic budding in blast 3) myelofibrosis (dense medullary overgrowth of reticulin fibers) 4) PAS(+), ANAE(+), SBB(-), peroxidase(-) and which is confirmed by platelet peroxidase oxidation on electromicroscope or monoclonal antibody. A case of aute megakaryoblastic leukemia was studied morphologically and monoclonal antibody.

  • PDF

Deletion of GSTM1 and T1 Genes as a Risk Factor for Development of Acute Leukemia

  • Dunna, Nageswara Rao;Vure, Sugunakar;Sailaja, K.;Surekha, D.;Raghunadharao, D.;Rajappa, Senthil;Vishnupriya, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2221-2224
    • /
    • 2013
  • The glutathione S-transferases (GSTs) are a family of enzymes involved in the detoxification of a wide range of chemicals, including important environmental carcinogens, as well as chemotherapeutic agents. In the present study 294 acute leukemia cases, comprising 152 of acute lymphocytic leukemia (ALL) and 142 of acute myeloid leukemia, and 251 control samples were analyzed for GSTM1 and GSTT1 polymorphisms through multiplex PCR methods. Significantly increased frequencies of GSTM1 null genotype (M0), GSTT1 null genotype (T0) and GST double null genotype (T0M0) were observed in the both ALL and AML cases as compared to controls. When data were analyzed with respect to clinical variables, increased mean levels of WBC, Blast %, LDH and significant reduction in DFS were observed in both ALL and AML cases with T0 genotype. In conclusion, absence of both GST M & GST T might confer increased risk of developing ALL or AML. The absence of GST enzyme might lead to oxidative stress and subsequent DNA damage resulting in genomic instability, a hallmark of acute leukemia. The GST enzyme deficiency might also exert impact on clinical prognosis leading to poorer DFS. Hence GST genotyping can be made mandatory in management of acute leukemia so that more aggressive therapy such as allogenic stem cell transplantation may be planned in the case of patients with a null genotype.

TP53 Codon 72 Polymorphism and Risk of Acute Leukemia

  • Dunna, Nageswara Rao;Vure, Sugunakar;Sailaja, K.;Surekha, D.;Raghunadharao, D.;Rajappa, Senthil;Vishnupriya, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.347-350
    • /
    • 2012
  • TP53 is the mostly commonly mutated gene in many cancers and the P53 tumor suppressor protein is involved in multiple cellular processes, including transcription, DNA repair, genomic stability, senescence, cell cycle control and apoptosis. A common single nucleotide polymorphism located within the proline rich region of TP53 gene at codon 72 in exon 4 encodes either proline or arginine. TP53 Arg 72 is more active than TP53 Pro 72 in inducing apoptosis. The aim of this study was to understand the association of the 72 codon polymorphism with acute leukemia development and prognosis. A total of 288 acute leukemia cases comprising 147 acute lymphocytic leukemia (ALL) and 141 acute myeloid leukemia (AML), as well as 245 controls were recruited for analysis of the TP53 72 polymorphism using PCR-RFLP method. Significant association of homozygous arginine genotype with AML was observed (${\chi}^2$- 133.53; df-2, p < 0.001. When data were analyzed with respect to clinical variables, elevation in mean WBC, blast %, LDH levels and slight reduction in DFS in ALL cases with the arginine genotype was observed. In contrast, AML patients with Pro/Pro had elevated WBC, Blast%, LDH levels with slightly reduced DFS. Our study indicates that Arg/Arg genotype might confer increased risk to development of acute myeloid leukemia.

Micronucleus Expression and Acute Leukemia Prognosis

  • Wang, Run-Chao;Yang, Lei;Tang, Yang;Bai, Ou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5257-5261
    • /
    • 2013
  • The micronucleus frequency (MNF) in peripheral blood lymphocytes (PBL) is a biomarker of chromosomal damage and genome instability in human populations.The relationship of micronucleus frequency with prognosis of patients with acute leukemia is not clear. We therefore investigated MNF in mitogen-activated peripheral blood lymphocytes from patients with hematologic diseases and solid tumours. Patients included 50 with acute leukemia, 49 diagnosed with myelodysplastic syndrome (MDS), 54 with benign blood diseases, and 45 with solid tumours, examined with 50 healthy controls. The mean MNF was significantly higher in cases of hematologic diseases and solid tumor patients than in healthy controls (P<0.001). There was no evident difference between MNF in the acute leukemia ($7.15{\pm}2.18$) and solid tumor groups ($7.11{\pm}1.47$), but both were higher than in the MDS group ($5.12{\pm}1.29$) and benign blood diseases group ($3.08{\pm}1.08$). Taking 7.15‰, the average MNF of the acute leukemia group as standard, and dividing 50 cases of acute leukemia patients into high MNF group ($MNF{\geq}7.15$‰) and low MNF group (MNF<7.15‰). The overall response (complete remission + partial remission) rates of the low MNF group were significantly higher than in the high MNF group (P=0.001). The high MNF group further showed lower overall survival rates than the low MNF group. MNF expression and progression-free survival seemed to have a opposite relationship, with a correlation coefficient of -0.702. These data indicate that MNF in peripheral blood lymphocytes is important for evaluation of prognosis of acute leukemia patients, and it can reflect progression of disease to a certain degree.

Identification of Gene Expression Signatures in Korean Acute Leukemia Patients

  • Lee kyung-Hun;Park Se-Won;Kim In-Ho;Yoon Sung-Soo;Park Seon-Yang;Kim Byoung-Kook
    • Genomics & Informatics
    • /
    • v.4 no.3
    • /
    • pp.97-102
    • /
    • 2006
  • In acute leukemia patients, several successful methods of expression profiling have been used for various purposes, i.e., to identify new disease class, to select a therapeutic target, or to predict chemo-sensitivity and clinical outcome. In the present study, we tested the peripheral blood of 47 acute leukemia patients in an attempt to identify differentially expressed genes in AML and ALL using a Korean-made 10K oligo-nucleotide microarray. Methods: Total RNA was prepared from peripheral blood and amplified for microarray experimentation. SAM (significant analysis of microarray) and PAM (prediction analysis of microarray) were used to select significant genes. The selected genes were tested for in a test group, independently of the training group. Results: We identified 345 differentially expressed genes that differentiated AML and ALL patients (FWER<0.05). Genes were selected using the training group (n=35) and tested for in the test group (n=12). Both training group and test group discriminated AML and ALL patients accurately. Genes that showed relatively high expression in AML patients were deoxynucleotidyl transferase, pre-B lymphocyte gene 3, B-cell linker, CD9 antigen, lymphoid enhancer-binding factor 1, CD79B antigen, and early B-cell factor. Genes highly expressed in ALL patients were annexin A 1, amyloid beta (A4) precursor protein, amyloid beta (A4) precursor-like protein 2, cathepsin C, lysozyme (renal amyloidosis), myeloperoxidase, and hematopoietic prostaglandin D2 synthase. Conclusion: This study provided genome wide molecular signatures of Korean acute leukemia patients, which clearly identify AML and ALL. Given with other reported signatures, these molecular signatures provide a means of achieving a molecular diagnosis in Korean acute leukemia patents.

Relationship between Exposure to Pesticides and Occurrence of Acute Leukemia in Iran

  • Maryam, Zakerinia;Sajad, Amirghofran;Maral, Namdari;Zahra, Lesan;Sima, Pooralimohamad;Zeinab, Attabac;Zahra, Mehravar;Fariba, Ebrahimi;Sezaneh, Haghpanah;Davood, Mehrabani
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.239-244
    • /
    • 2015
  • Background: One of the causes of acute leukemia can be exposure to certain chemicals such as pesticides. This study determined the relationship between exposure to pesticides and the occurrence of acute leukemia in Fars province, south of Iran. Materials and Methods: Between April 2011 and April 2013 in a case-control study conducted in Nemazee Hospital in Shiraz, Southern Iran; 314 subjects diagnosed with acute leukemia (94 pediatric cases and 220 adults) were enrolled to determine any correlation between exposure to pesticides and the occurrence. Controls (n=314) were matched by sex and age. Results: There was a history of exposure to pesticides among 85% of pediatric cases and 69% of their controls and 83% of adult cases and 75% of their controls while 87.5% of pediatric cases and 90% of adult cases reported exposure to intermediate and high doses of pesticides and among the controls, the exposure to low doses of pesticides was 70.5% and 65%, respectively. Exposure to indoor pesticides was seen among most of cases and controls. Being a farmer was at a significantly more increased risk of developing acute leukemia in comparison to other jobs, especially for their children. Conclusions: Exposure to pesticides was shown to be one of the most important causes of acute leukemia. It seems that there is a need to educate the people on public health importance of exposure to pesticides especially during school time to reduce the risk of malignancies during childhood.

Comparative Analysis of CNN Models for Leukemia Diagnosis (백혈병 진단을 위한 CNN 모델 비교 분석)

  • Lee, Yeon-Ji;Ryu, Jung-Hwa;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.279-282
    • /
    • 2022
  • Acute lymphoblastic leukemia is an acute leukemia caused by suppression of bone marrow function due to overgrowth of immature lymphocytes in the bone marrow. It accounts for 30% of acute leukemia in adults, and children show a cure rate of over 80% with chemotherapy, while adults show a low survival rate of 20% to 50%. However, research on a machine learning algorithm based on medical image data for the diagnosis of acute lymphoblastic leukemia is in the initial stage. In this paper, we compare and analyze CNN algorithm models for quick and accurate diagnosis. Using four models, an experimental environment for comparative analysis of acute lymphoblastic leukemia diagnostic models was established, and the algorithm with the best accuracy was selected for the given medical image data. According to the experimental results, among the four CNN models, the InceptionV3 model showed the best performance with an accuracy of 98.9%.

  • PDF

A Case of AML (M3) in Pregnancy

  • Shim, Moon-Jung;Kang, Yun-Jung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.3
    • /
    • pp.120-123
    • /
    • 2013
  • Leukemia in pregnancy was first reported by Virchow in 1845, and acute Leukemia that occurs with pregnancy is extremely rare. About 350 pregnancies with leukemia have been reported in literature. The incident of acute leukemia during pregnancy has been reported in one case per 100,000 pregnancies case. A 40-year-old patient with 30 weeks of pregnancy, (by promyelocyte which is contained granules and auer rods in the bone marrow and biopsy) was diagnosed with acute promyelocyte leukemia WITH t (15;17) (q22;q12); PML-RARA. (M3) in peripheral blood and bone marrow examination, and gave a birth to the fetus normally, January 24, 2013, after receiving the complete remission decision from the bone marrow, complete blood cell count, PML-RARA PCR test, showed normal findings until March 2013. The treatment of acute leukemia during pregnancy should be considered as treatment of a pregnant mother and the impact on the fetus. Decisions about when and how birth takes place is difficult and has to consider both mother and fetus. It is preferable to start immediate treatment without delay so that the treatment time to achieve complete remission or full recovery of the pregnant mother is longer.

  • PDF

Non-B, Non-T Acute Lymphoblastic Leukemia in a Cat

  • Sumin Cha;Hyunwoo Kim;Hyeona Bae;Minjeong Kang;Rankyung Jung;Minji Kim;DoHyeon Yu
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.298-302
    • /
    • 2023
  • A 7-year-old neutered male, domestic shorthair cat presented anorexia and lethargy. The complete blood cell count revealed severe non-regenerative anemia, lymphocytic leukocytosis, neutropenia, and thrombocytopenia. On the peripheral blood smear examination, medium to large lymphoblastic cells with moderate amounts of basophilic cytoplasm were observed in up to 70% of peripheral leukocytes. Feline leukemia and immunodeficiency viruses were not detected using a commercial diagnostic kit. While splenomegaly and blunt margins of the caudoventral liver were observed in abdominal radiography, changes in the intra-abdominal lymph nodes were not remarkable. Ultimately, flow cytometric immunophenotyping from the peripheral blood revealed a negative for B-cell markers (CD21-/CD79a-) and T-cell markers (CD3-/CD4-/CD5-/CD8-). Based on the hematological examination and the immunophenotyping assay, the cat was diagnosed with non-B, non-T acute lymphoblastic leukemia. Here, we report a rare case of non-B, non-T acute lymphoblastic leukemia to raise awareness and provide information on clinical symptoms and laboratory test and immunophenotyping analysis results.