• Title/Summary/Keyword: Actuator array

Search Result 70, Processing Time 0.024 seconds

Development of the active magnetic regenerative refrigerator for room temperature application (상온 능동형 자기 재생 냉동기의 개발)

  • Park, I.;Kim, Y.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

Design and Fabrication of a Micro PZT Cantilever Array Actuator for Applications in Fluidic Systems

  • Kim Hyonse;In Chihyun;Yoon Gilho;Kim Jongwon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1544-1553
    • /
    • 2005
  • In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating behavior predicted. The calculated value of the tip deflection was 15 ${\mu}m$ at 5 V. The fabrication process from SIMOX (Separation by oxygen ion implantation) wafer is presented in detail with the PZT film deposition process. The PZT films are characterized by investigating the ferroelectric properties, dielectric constant, and dielectric loss. Tip deflections of 12 ${\mu}m$ at 5 V are measured, which agreed well with the predicted value. The 18 ${\mu}l/s$ leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed.

High-Q Micromechanical Digital-to-Analog Variable Capacitors Using Parallel Digital Actuator Array (병렬 연결된 다수의 디지털 구동기를 이용한 High-Q 디지털-아날로그 가변 축전기)

  • Han, Won;Cho, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.137-146
    • /
    • 2009
  • We present a micromechanical digital-to-analog (DA) variable capacitor using a parallel digital actuator array, capable of accomplishing high-Q tuning. The present DA variable capacitor uses a parallel interconnection of digital actuators, thus achieving a low resistive structure. Based on the criteria for capacitance range ($0.348{\sim}1.932$ pF) and the actuation voltage (25 V), the present parallel DA variable capacitor is estimated to have a quality factor 2.0 times higher than the previous serial-parallel DA variable capacitor. In the experimental study, the parallel DA variable capacitor changes the total capacitance from 2.268 to 3.973 pF (0.5 GHz), 2.384 to 4.197 pF (1.0 GHz), and 2.773 to 4.826 pF (2.5 GHz), thus achieving tuning ratios of 75.2%, 76.1%, and 74.0%, respectively. The capacitance precisions are measured to be $6.16{\pm}4.24$ fF (0.5 GHz), $7.42{\pm}5.48$ fF (1.0 GHz), and $9.56{\pm}5.63$ fF (2.5 GHz). The parallel DA variable capacitor shows the total resistance of $2.97{\pm}0.29\;{\Omega}$ (0.5 GHz), $3.01{\pm}0.42\;{\Omega}$ (1.0 GHz), and $4.32{\pm}0.66\;{\Omega}$ (2.5 GHz), resulting in high quality factors which are measured to be $33.7{\pm}7.8$ (0.5 GHz), $18.5{\pm}4.9$ (1.0 GHz), and $4.3{\pm}1.4$ (2.5 GHz) for large capacitance values ($2.268{\sim}4.826$ pF). We experimentally verify the high-Q tuning capability of the present parallel DA variable capacitor, while achieving high-precision capacitance adjustments.

Minimization of Initial Deflection of Multi-Layered Micro-Actuator with Step-Up Structure (Step-Up 구조를 갖는 다층박막 초소형 구동소자의 초기변형 최소화에 관한 연구)

  • Lee, Hee-Joong;Kang, Shin-Ill
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2415-2420
    • /
    • 2002
  • In the present study, a new anchor design was proposed to minimize the initial deflection of micro multi-layer cantilever beam with step-up structure, which is a key component of thin film micro-mirror array. It is important to minimize the initial deflection, caused by residual stress, because it reduces the performance of the actuation. Theoretical and experimental studies were conducted to examine the cause of the initial bending deflection. It was found that the bending deflection at the anchor of the cantilever beam was the primary source of initial deflection. Various anchor designs were proposed and the initial deflections for each design were calculated by finite element analysis. The analysis results were compared with experiments. To reduce the initial deflection a secondary support was added to the conventional structure. The optimal shapes were obtained by simulation and experiment. It was found from the analysis that the ratio or horizontal and vertical dimensions of secondary support was the governing factor, which affected the initial deflection.

Piezoelectric PZT Cantilever Array Integrated with Piezoresistor for High Speed Operation and Calibration of Atomic Force Microscopy

  • Nam, Hyo-Jin;Kim, Young-Sik;Cho, Seong-Moon;Lee, Caroline-Sunyong;Bu, Jong-Uk;Hong, Jae-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.246-252
    • /
    • 2002
  • Two kinds of PZT cantilevers integrated with a piezoresistor have been newly designed, fabricated, and characterized for high speed AFM. In first cantilever, a piezoresistor is used to sense atomic force acting on tip, while in second cantilever, a piezoresistor is integrated to calibrate hysteresis and creep phenomena of the PZT cantilever. The fabricated PZT cantilevers provide high tip displacement of $0.55\mu\textrm{m}/V$ and high resonant frequency of 73 KHz. A new cantilever structure has been designed to prevent electrical coupling between sensor and PZT actuator and the proposed cantilever shows 5 times lower coupling voltage than that of the previous cantilever. The fabricated PZT cantilever shows a crisp scanned image at 1mm/sec, while the conventional piezo-tube scanner shows blurred image even at $180\mu\textrm{m}/sec$. The non-linear properties of the PZT actuator are also well calibrated using the piezoresistive sensor for calibration.

Analysis and Experiment of Ultrasonic Vibration Mechanism using PZT Actuator for Precision Laser Machining (압전구동기를 이용한 정밀 가공용 초음파 진동장치 해석 및 실험)

  • Kim, Woo-Jin;Jeon, Yong-Ho;Cho, Sung-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1347-1352
    • /
    • 2011
  • Recently, as the aged population grows around the world, many medical instruments, devices, and their fabrication processes are developing. Among the devices, a drug delivery stent is a good example for precision machining. Conventional drug delivery stent has problem of the remaining polymer because the drug is coated on the surface with it. If the drug is impregnated into the micro hole array on the stent surface, the polymer can be perfectly eliminated. Micro sized holes are generally fabricated by laser machining however, the fabricated holes do not have an enough aspect ratio to contain the drug or a good surface finish to deliver the stend to blood vessel tissue. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for abrication of micro sized holes better. The results indicated that the burr size can be significantly decreased with vibration assisted in nanosecond pulse laser drilling test.

Fabrication of a Magnetostrictive Transpositioner using Thin Film Deposition and MEMS Techniques (박막성형 기술 및 MEMS 공정을 이용한 자기변형 위치변환기)

  • Lee, Heung-Shik;Cho, Chong-Du;Lee, Sang-Kyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1617-1620
    • /
    • 2007
  • This paper presents a magnetostrictive transpositioner and its fabrication process. To get a transposition movement without shifting or twisting, it is designed as an array type. To fabricate the suggested design, micromachining and selective DC magnetron sputtering processes are combined. TbDyFe film is sputter-deposited on the back side of the bulk micromachined transpositioner, with the condition as: Ar gas pressure below $1.2{\times}10^{-9}$ torr, DC input power of 180W and heating temperature of up to $250^{\circ}C$ for the wireless control of each array component. After the sputter process, magnetization and magnetostriction of each sample are measured. X-ray diffraction studies are also carried out to determine the film structure and thickness of the sputtered film. For the operation, each component of the actuator has same length and out-of-plane motion. Each component is actuated by externally applied magnetic fields up to 0.5T and motion of the device made upward movement. As a result, deflections of the device due to the movement for the external magnetic fields are observed.

  • PDF

Hot Firing Test of a Quadrature NEA SSD9103S1 Configuration

  • Ja-Chun, Koo;Hee-Sung, Park;Max, Guba
    • International Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • The NEA release mechanism is used to provide restraint and release functions with low shock for critical deployment operations on solar arrays after launch. The GK3 solar array consists of 2 wings and 6 hold down points per panel. The NEA SSD9103S1 is a part of the GK3 solar array hold-down and release mechanism. Each NEA unit is equipped with two Z-diodes which provide power to a NEA unit connected in series after actuation of the fuse wire. This paper presents the hot firing test results of a quadrature NEA SSD9103S1 configuration. One output powers a maximum of 4 NEA SSD9103S1 units simultaneously. The necessary actuation pulse duration has been determined to meet margin requirement for thermal energy of minimum 4. Actuation thermal energy difference is about 6.6% between each half of two fired serial NEAs. Thermal energy margin at worst case is minimum 5.9 in case of an actuation pulse duration of 500 ms. Two series Zener impedance depend on current applied has been characterized by an additional actuation after all fuse wires are open circuit. Total number of actuation commands to the GK3 NEA unit reduce drastically from 24 in case of single NEA configuration down to 8 in case of parallel and quadrature NEA configurations. It can be accommodated by the existing HP2U Pyro design without any impact.

Analysis of Novel Magnetic-Spring Actuators for Portable Units (휴대장치용 새로운 자기 스프링 액추에이터의 해석)

  • 한인환
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1942-1949
    • /
    • 2004
  • SLA(Scanned Linear Array) is a portable display unit for implementing next-generation virtual realities, utilizes a design that light generated by a line of LEDs is reflected from the rapidly oscillating mirror to generate a raster display. Reaction forces generated by the motions of the mirror and counter-balance mass cancel each other at the device base, reducing vibration. Metal leaf springs have been extensively applied in such portable units. Magnetic springs have been developed and adopted that can replace the metal spring and can avoid many disadvantages of metal springs. We model and analyze the dynamics of the structure with magnetic springs and present the simulation and experimental analysis results, which can be utilized for identifying and eliminating possible problem sources in removing shaking forces and moments, and oscillating the mirror at the required amplitude and frequency. Finally, we present the improved novel magnetic actuator model which can be applied in portable display units.

Reduction of Armature Reaction for Moving Coil Linear Oscillatory Actuator (가동코일형 LOA에서의 전기자 반작용 저감법)

  • Jang, S.M.;Jeong, S.S.;Lee, S.H.;Yun, I.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.580-582
    • /
    • 2001
  • In moving coil LOA, the variation of mover position and the consequent changes of coil flux path affect the coil inductance because of unbalanced magnetic circuit. Furthermore, the armature field shifts and distorts the airgap flux density distribution due to the magnet alone by a certain amount, which cause the unbalanced reciprocating force. In this paper, we propose the reduction method of armature reaction and coil inductance. The proposed LOA has the shorted ring the saturated core, the double coil, and Halbach array.

  • PDF