• Title/Summary/Keyword: Actuator Modeling

Search Result 325, Processing Time 0.028 seconds

Track following control of optical pick-up actuator using PZT (PZT를 이용한 광 정보저장기기용 엑츄에이터의 추적제어)

  • 이우철;양현석;박노철;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.664-669
    • /
    • 2003
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(Voice Coil Motor) for coarse motion, for SFF ODD(Small Form Factor Optical Disk Drive), in order to achieve fast access speed and precise track following control. We focus our attention on the design and control of the PZT actuator, because there have been a lot of previous researches related to the VCM and dual-stage actuators. Due to the dual cantilever structure, the PZT actuator can generate precise translational tracking motion at its tip where optical pickup is attached at, and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.

  • PDF

Modeling of IPMC Actuator for the Endoscopic Microcapsule (캡슐형 내시경 로봇의 IPMC 액추에이터 모델링)

  • Oh, Sin-Jong;Kim, Hun-Mo;Choi, Hyouk-Ryeol;Jeon, Jae-Wook;Nam, Jae-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.660-666
    • /
    • 2001
  • The Ionic Polymer Metal Composite (IPMC) is one of the electroactive polymer (EAP) have potential application as micro actuators. In this study, IPMC is used as actuator to control of the direction for the endscopic microcapsule. Because it bends in water and wet conditions by applying a low voltage $(1\sim3\;V)$ to its surfaces. The basic characteristics and the static modeling of IPMC are discussed. Also the dynamic modeling is performed using the Lagrange' equation. Computer simulation results show that the performed modeling guarantee similarity of actual system.

  • PDF

Development of Fuzzy control and Modeling of IPMC Actuator for the Endoscopic Microcapsule (캡슐형 내시경 로봇의 IPMC 액추에이터 모델링 및 퍼지 제어 알고리듬 개발에 대한 연구)

  • 오신종;김훈모;최혁렬;전재욱;남재도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.39-48
    • /
    • 2003
  • The Ionic Polymer Metal Composite (IPMC) is one of the electroactive polymer (EAP) have potential application as micro actuators. In this study, IPMC is used as actuator to control of the direction for the endscopic microcapsule. Because it bends in water and wet conditions by applying a low voltage (1∼3 V) to its surfaces. The basic characteristics and the static modeling of IPMC are discussed. Also the dynamic modeling is performed using the Lagrange' equation. Computer simulation results show that the performed modeling guarantee similarity of actual system.

Dynamic Modeling and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.650-655
    • /
    • 2006
  • Dynamic modeling and active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF

Modeling, Simulation, and Control of a Polyaniline/Carbon-Nanotube Polymer Actuator (폴리아닐린/탄소나노튜브 폴리머 액츄에이터의 모델링, 시뮬레이션 및 제어)

  • Sohn, Ki-Won;Yi, Byung-Ju;Kim, Sean-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.348-354
    • /
    • 2007
  • Polymer actuators, which are also called as smart materials, change their shapes when electrical, chemical, thermal, or magnetic energy is applied to them and are useful in wide variety of applications such as microelectromechanical systems (MEMS), machine components, and artificial muscles. For this study, Polyaniline/carbon-nanotube polymer actuator that is one of electroactive polymer actuators was prepared. Since the nonlinear phenomena of hysteresis and a step response are essential considerations for practical use of polymer actuators, we have investigated the movement of the Polyaniline/carbon-nanotube polymer actuator and have developed an integrated model that can be used for simulating and predicting the hysteresis and a step response during actuation. The Preisach hysteresis model, one of the most popular phenomenological models of hysteresis, were used for describing the hysteretic behavior of Polyaniline/carbon-nanotube polymer actuator while the ARX method, one of system identification techniques, were used for modeling a step response. In this paper, we first expain details in preparation of the Polyaniline/carbon-nanotube polymer then present the mathematical description of our model, the extraction of the parameters, simulation results from the model, and finally a comparison with measured data.

Development of Modeling and control Methods for Multi-DOF dielectric polymer actuator

  • Jung, M.Y.;Jung, K.M.;Koo, J.C.;Choi, H.R.;Nam, J.D.;Lee, Y.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1225-1228
    • /
    • 2004
  • Principles and mechanism of energy transduction of dielectric polymer materials are well known from the various smart material related publications. However their introduction to industrial actuator applications is limited mainly due to difficulties guarantee controllability and reliability. Most of the previous publications have elaborates energy transduction physics of chunk of polymer while development of construction methods for feasible actuators made of the material is rarely proposed. In the present article, a conceptual design of multi-DOF linear polymer actuator construction that is to be controllable with moderate level of control work os introduced. In addition, numerical models that are developed with a unified energy based approach are presented not only for basic working mechanism analysis of the polymetric soft actuator but for providing analytical foundation to expend the concept toward design of multi-DOF actuator controls.

  • PDF

Dynamic Characteristics of an Optical Pick-up Actuator Considering the Motion of a Feeding Deck (피딩데크 운동을 고려한 광픽업 액추에이터의 동특성 해석)

  • 신갑수;김원석;정진태
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • There are a lot of roots of errors in a motion of the optical pick-up actuator being one of the most significantcomponents in a CD-ROM drive. Most of the studios recently performed have a tendency to seek for the causes from an actuator itself. This paper presents dynamic characteristics of an actuator affected by the motion of a feeding deck. The feeding system is modeled as a rigid body with eight degree-of-freedom. Using Largrange's equation, we derive linear equations of motion with respect to the rectangular coordinate. We found that the ranges of the natural frequencies of a feeding deck and the actuator are close to each other. The time responses are also computed by the Newmark method and Runge-Kutta method. The result show that it is important effect to consider feeding deck in modeling and designing an optical pick-up.

Five-DOF Polymer Actuator Based on Dielectric Elastomer

  • Kwangmok Jung;Lee, Sangwon;Jongwon Kwak;Kim, Hunmo;Jaedo Nam;Jaewook Jeon;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.78.3-78
    • /
    • 2002
  • In this paper, we present a five-DOF actuator based on dielectric elastomer. The actuator is designed for generating five DOFs motions to drive a micro camera steering module and provides all the functions for controlling CCD array such as focusing, pan and tilting. Basic modeling of the actuator is performed, and simulation works and experimental verifications are conducted, too. The camera steering module includes most parts necessary for driving the actuator such as a micro-controller and DC-DC converter, etc. It can be operated with a personal computer using only communication lines without external power supply. A prototype is developed and its performance is experimentally proved. $\textbullet$ artificial muscle, EAP, actuator.

  • PDF

Notch Characteristics of Spool Actuator (스풀 액추에이터의 노치 특성)

  • Yun, So-Nam;Kang, Bo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.751-756
    • /
    • 2008
  • This paper presents the fluid characteristics of the spool actuator used for construction vehicles. A spool actuator is used for directional control of pressurized fluid and has a roll to lock the fluid flow. It is important to design the spool actuator optimally because this actuator is actuated in the sleeve by sliding motion and has some critical design parameters such as stick-slip, leakage and shock pressure. The parameters like stick-slip and leakage can be solved by precision manufacturing but the shock pressure which is taken place when the fluid direction is changed needs the parameter analysis procedure throughly. In this study, mathematical modeling and 2 & 3 phase flow dynamics analysis of the spool actuator were achieved. Using suggested model, all possible operating conditions were analyzed.

  • PDF

Finite Element Analysis of A Piezoelectric Actuator (압전 작동기 거동해석을 위한 유한요소 모사)

  • Lee, Heung-Shik;Cho, Chong-Du
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1401-1406
    • /
    • 2003
  • Mechanical behavior of a piezoelectric actuator is studied as a preceding research for the manufacturing of three-dimensional micro-structures. It is needed to examine the simulation of a piezoelectric actuator according to applied direction of voltage, by researching displacement characterization of piezoelectric material through piezoelectric theory. To this end, finite element modeling is employed to study the response of a piezoelectric material under the various input voltages. Where the actuator is simulated by use of ANSYS. To avoid direct contact piezoelectric material with working fluid, silicon, polymer, etc., the actuator is modeled with nickel fixed diaphragm.

  • PDF