• 제목/요약/키워드: Actual vehicle test

검색결과 271건 처리시간 0.021초

자동차 제동장치의 시뮬레이션 시험 기법에 관한 연구 (A Study on the Techniques of Simulation Test in Automotive Braking System)

  • 민규식;김형섭
    • 한국안전학회지
    • /
    • 제8권2호
    • /
    • pp.23-29
    • /
    • 1993
  • In this study, the method of deciding simulation test conditions is developed by computer program compared to actual vehicle test as accurately as possible. These results of analytical test conditions are conformed by simulation test using the brake dynamometer by comparison with test results of actual vehicle. Results of simulation test by these analytical results show good agreement with the vehicle test results. The analytical simulation test conditions provide the input data to brake dynamometer which follows : - each test inertia corresponding to braking deceleration - test condition of input control : brake line pressure - test condition of output control : braking torque

  • PDF

국내도로 환경에서의 HDA 시험평가 방법에 관한 연구 (A Study on Evaluation Method of the HDA Test in Domestic Road Environment)

  • 배건환;김봉주;이선봉
    • 자동차안전학회지
    • /
    • 제11권4호
    • /
    • pp.39-49
    • /
    • 2019
  • Autonomous vehicle is a car which drives itself without any human interaction. SAE provides technical definitions for autonomous and international standards for test evaluation. Accordingly, automobile industry is actively researching development and evaluation of various ADAS (Advanced Driver Assistance Systems), : representative technology of autonomous technology. Recently, ADAS is in the commercialization level such as ACC, LKAS, AEB, and HDA etc. And it also has issues about safety evaluation. The purpose of HDA in ADAS is reduced the driving load on highway. It has a function which can maintain lane keeping and control distance from forward vehicle. This function is evaluated to be useful for accident prevention. Therefore, this paper proposes the safety evaluation scenario of HDA, considering the domestic highway design criteria and the situation that may arise on the actual highway. We compared and analyzed the data acquired through simulation and actual vehicle test. And verified the reliability of the proposed safety evaluation scenario. The verified result is expected safety evaluation of HDA is possible even under the bad condition, which cannot be tested.

단안 카메라를 이용한 LKAS 시험평가 방법에 관한 연구 (A Study on the Test Evaluation Method of LKAS Using a Monocular Camera)

  • 배건환;이선봉
    • 자동차안전학회지
    • /
    • 제12권3호
    • /
    • pp.34-42
    • /
    • 2020
  • ADAS (Advanced Driver Assistance Systems) uses sensors such as camera, radar, lidar and GPS (Global Positioning System). Among these sensors, the camera has many advantages compared with other sensors. The reason is that it is cheap, easy to use and can identify objects. In this paper, therefore, a theoretical formula was proposed to obtain the distance from the vehicle's front wheel to the lane using a monocular camera. And the validity of the theoretical formula was verified through the actual vehicle test. The results of the actual vehicle test in scenario 4 resulted in a maximum error of 0.21 m. The reason is that it is difficult to detect the lane in the curved road, and it is judged that errors occurred due to the occurrence of significant yaw rates. The maximum error occurred in curve road condition, but the error decreased after lane return. Therefore, the proposed theoretical formula makes it possible to assess the safety of the LKA system.

지게차용 엔진식 드라이브 액슬 수명평가를 위한 가속수명시험 선정 연구 (Accelerated Life Test Selection Study for Life Evaluation of Engine Type Drive Axle for Forklift)

  • 김준영;유영준;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권3호
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, the selection of a reliable accelerated life test code for a 2-ton forklift was accomplished by choosing the driving resistance coefficient failure-free test time based on a 10,000-hour B10 life. The overall life and average equivalent load of the vehicle were then calculated based on actual driving test conditions using the selected driving resistance coefficient. The gear train's accelerated life test code was selected by adjusting the equivalent load to a torque and rotation speed that did not exceed 125%(about 75HP) of the vehicle rated power. The safety of the test standards was validated by conducting an actual accelerated life test utilizing the proposed test method in this study and comparing the test result with the corresponding theoretical value. It is anticipated that the reliability of the accelerated life test in this paper will be enhanced, by incorporating actual driving performance data collected directly from the forklift and adjusting the conditions used in developing the accelerated life test code.

WLTC 시험 모드에서 소형 경유자동차의 후처리 시스템에 따른 질소산화물 및 입자개수 배출 특성 (Characteristics of NOx and PN According to After-treatment for Light-duty Diesel Vehicles in WLTC Test Mode)

  • 이동인;고상철;유영수;박준홍;차준표;전문수
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.234-243
    • /
    • 2018
  • Since September 2017, a small diesel vehicle certification test mode has been enhanced from NEDC to WLTC. The main reason for the change of the certification test mode is that the certification test mode of the emission control standard of the diesel vehicle does not sufficiently reflect various driving patterns of the actual roads. Several automakers have developed after-treatment systems such as LNT, SCR, and DPF to meet enhanced emissions regulations. In this study, four small diesel cars were selected for sale in Korea, and the exhaust gas measurement test was performed in the WLTC mode, which reflects the driving characteristics of the actual roads. As a result of test, LNT vehicle exceeded Euro 6 NOx regulation and SCR vehicle satisfied Euro 6 NOx regulation. In addition, both LNT and SCR systems showed high NOX emission characteristics due to speed, RPA and Vxa. For the PN, all test vehicles were fitted with a DPF and met the Euro 6 PN regulations, with similar PN emissions results in LNT and SCR system.

전투차량의 피해 정도를 계산하기 위한 수치해석적 접근법 (Numerical Analysis Approach to Calculate the Damage Degree of the Combat Vehicle)

  • 조아현;박강;김건인
    • 한국CDE학회논문집
    • /
    • 제22권2호
    • /
    • pp.101-109
    • /
    • 2017
  • In order to reduce the number of casualties by improving the survivability of the combat vehicle, the vulnerability analysis of the combat vehicle is needed. However, the actual test for the vulnerability analysis requires large experimental space and expensive equipment costs long time and large expense. It is needed to develop a new method that can replace the actual test. In the paper, we suggested a new approach to analyzing the vulnerability using the M&S method instead of the actual test. To analyze the vulnerability, the shot line analysis is performed to find out which part is penetrated by the bullet. The component of the parts is simplified to "Single-Target", "Double-Target", "Air gapped-Target" and can be performed the penetration analysis using the ANSYS Explicit Dynamics. The penetration depth and the residual velocity of the bullet are calculated by analyzing penetration of each part of the combat vehicle. The penetration data calculated the penetration analysis can be used to define the damage level of the combat vehicle. The purpose of this paper is to collect penetration data for various targets and bullets. And "7.62mmAP" is used as the bullet, "7075-T6" is used as a target.

대형 트럭의 선회 주행특성 해석을 위한 컴퓨터 모델의 개발 (Development of a Computer Model for the Turning Maneuver Analysis of a Heavy Truck)

  • 문일동;권혁조;오재윤
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.121-129
    • /
    • 2000
  • this paper develops a computational model for the turning maneuver analysis of a cabover type heavy truck. The model having 42 degree-of-freedom is developed using ADAMS. Leaf springs used in the front and rear suspension systems are modeled by dividing it three links and joining them with joints. Force and displacement relationship showing nonlinear hysteric characteristics of the leaf spring is measured and modeled with an exponential function. A velocity and force relationship of a shock absorber is measured and modeled with a spline function. And a stabilizer bar is modeled using ADAMS beam element to consider a twisting and bending effect. To verify the developed model an actual vehicle test is performed in the double lane change course with 50kph and 60kph vehicle velocity. In the actual vehicle test lateral acceleration roll angle and yaw rate are measured, The tendency and peak-to-peak values of the actual vehicle test and simultion results are compared each other.

  • PDF

K-City 가상주행환경 고도화를 통한 자율주행시스템 검증 환경 구축 (Development of Autonomous Driving System Verification Environment through Advancement of K-City Virtual Driving Environment)

  • 이빈희;허관회;이장우;김남우;윤종민;조성우
    • 자동차안전학회지
    • /
    • 제15권1호
    • /
    • pp.16-26
    • /
    • 2023
  • Recently, the importance of simulation in a virtual driving environment as well as real road-based tests for autonomous vehicle testing is increasing. Real road tests are being actively conducted at K-City, an autonomous driving test bed located at the Korea Automobile Safety Test & Research Institute of the Transportation Safety Authority. In addition, the need to advance the K-City virtual driving environment and build a virtual environment similar to the autonomous driving system test environment in real road tests is increasing. In this study, for K-City of Korea Automobile Safety Test & Research Institute, using detailed drawings and actual field data, K-City virtual driving environment was advanced, and similarity verification was verified through comparative analysis with actual K-City.

전자식 차체 자세제어 장치 실시간 시뮬레이션을 위한 유압 모델 개발 (Development of Hydraulic Simulation Model for ESP Real Time Simulation)

  • 천세영;최성웅;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.36-42
    • /
    • 2019
  • The ESP (Electronic Stability Program) is an active control system that controls the posture of the vehicle by sensing the unstable state of the vehicle during braking, driving, or turning. The system works if the vehicle becomes unstable and it is very dangerous to develop it in the actual vehicle. For this reason, many studies have been carried out on the method of developing with simulation such as SIL / EIL. Some advanced companies have already applied it to the product development process. In this study, ESP hydraulic system and braking device model were constructed using SimulationX to build ESP SIL / EIL model. The hydraulic system model was constructed using the actual design parameters and the performance of the hydraulic model was verified by comparing with the actual vehicle test.

실차 실험을 통한 운전자 조향 모델의 검증 (Validation of Driver Steering Model with Vehicle Test)

  • 정태영;이건복;이경수
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, validation of Driver Steering Model has been conducted. The comparison between the simulation model and vehicle test results shows that the model is very feasible for describing combined human driver and actual vehicle dynamic behaviors. The 3D vehicle model is consisted of 6-DOF sprung mass and 4-quarter car model for vehicle body dynamics. Powertrain model including differential gear and Pacejka tire model are applied. The driver steering model is also validated with vehicle test result. The driver steering model is based on angle and displacement error from the desired path, recognized by driver.