• Title/Summary/Keyword: Actual System Trajectory

Search Result 67, Processing Time 0.023 seconds

Autonomous Path-Tracking Performance of an OmniX-Type Boat Based on Open-Source Ardupilot with RTK GPS (RTK GPS를 이용한 오픈소스 아두파일럿 기반 OmniX 보트의 자율주행 경로 추적성에 관한 연구)

  • An, Nam-Hyun;Gu, Bon-Kuk;Park, Hui-Seung;Jang, Ho-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.867-874
    • /
    • 2021
  • The IoT (Internet of Things) technology is rapidly becoming an important consideration in many engineering fields in the current 4th industrial era. In recent years, the concepts of digital shipbuilding and smart factories have been adopted as trends in shipyards. However, there is active interest in research on implementing autonomous driving in autonomous vehicles and airplanes, which is currently available in commercial form in a limited capacity. The present study is regarding the path-tracking performance of a boat to accomplish an autonomous driving mission using a flight controller (FC) and real-time kinematic (RTK) global positioning system (GPS) based on an open-source Ardupilot; an actual sea test is also performed using this system on a calm lake. The boat's mission is to evaluate the maneuverability of the self-driving process to a specific point and returning to the home position. For a given speed, the difference between the preset mission trajectory and actual operational trajectory was analyzed, and a series of studies were conducted on the applicability of the system to ships. In addition, the movements and maneuverability of the OmniX-type hull with four propellers were investigated, and the driving path-tracking performance was observed to increase by a maximum of 48%.

Navigation Augmentation in Urban Area by HALE UAV with Onboard Pseudolite during Multi-Purpose Missions

  • Kim, O-Jong;Yu, Sunkyoung;No, Heekwon;Kee, Changdon;Choi, Minwoo;Seok, Hyojeong;Yoon, Donghwan;Park, Byungwoon;Jee, Cheolkyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.545-554
    • /
    • 2017
  • Among various applications of the High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV), this paper has a focus on the Global Positioning System (GPS) utilizing pseudolite and its improved performance, particularly during the multi-purpose missions. In a multi-purpose mission, the HALE UAV follows a specified flight trajectory for both navigation applications and missions. Some of the representative HALE missions are remote exploration, surveillance, reconnaissance, and communication relay. During these operations, the HALE UAV can also be an additional positioning signal source as it broadcast signals using pseudolite. The pseudolite signal can improve the availability, accuracy, and reliability of the GPS particularly in areas with poor signal reception, such as shadowed regions between tall buildings. The improvement in performance of navigation is validated through simulations of multi-purpose missions of the solar-powered HALE UAV in an urban canyon. The simulation includes UAV trajectory generation at stratosphere and uses actual geographical building data. The results indicate that the pseudolite-equipped HALE UAV has the potential to enhance the performance of the satellite navigation system in navigationally degraded regions even during multi-purpose operations.

Development of 3-Dimensional Simulator for a Biped Robot (이족 보행로봇의 3차원 모의실험기 개발)

  • Noh, Kyung-Kon;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2438-2440
    • /
    • 2004
  • This study is concerned with development of 3-Dimensional simulator of a biped robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a biped robot which have a prismatic balancing weight is conditional linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. To get a stable gait of a biped robot, stabilization equations with ZMP (Zero Moment Point) are modeled as non-homogeneous second order differential equations for each balancing weight type. A trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3-Dimensional graphic simulator is programmed to get and calculate the desired ZMP and the actual ZMP. Walking of 4 steps was simulated and verified. This balancing system will be applied to a biped humanoid robot, which consist Begs and upper body, at future work.

  • PDF

Robust control of robot manipulators (로봇 매니퓰레이터의 강인한 제어)

  • Yi, Hyung-Kyi;Yi, Moon-No;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.380-382
    • /
    • 1993
  • In this paper, we derive a simple robust nonlinear control scheme for n-link robot manipulators subject to parameter uncertainty. By using the theory of variable structure system(VSS) and taking advantage of the important property of the robot dynamics, the stability of the derived control scheme is proved. This scheme utilizes the desired trajectory outputs, which can be calculated a priori, instead of the actual joint outputs in the nonlinear compensation controller. So the amount of on-line calculations is largely reduced, and as a result, this scheme can be implemented much more efficiently.

  • PDF

Performance Evaluation of Concrete Polishing Robot with Omnidirectional Mobile Mechanism (전방향 이동 메커니즘을 적용한 콘크리트 폴리싱 로봇의 성능평가)

  • Cho, Gangik;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.112-117
    • /
    • 2016
  • In the construction industry, concrete polishing is used to grind and rub the surface of concrete grounds with polishing machines to increase the strength of the concrete after deposition. Polishing is performed manually in spite of the generation of dust and the requirement of frequent replacements of the polishing pad. The concrete polishing robot developed in this research is a novel polishing automation system for preventing the workers from being exposed to poor working environments. This robot is able to change multiple polishing tools automatically; however, the workers can conveniently replace the worn-out polishing pads with new ones. The mobile platform of the polishing robot employs omnidirectional wheels to enable a flexible motion even in small and complicated workspaces. To evaluate the performance of the developed concrete polishing robot, extensive experiments including square trajectory tracking, automatic tool changing, actual polishing, and path generation simulation were performed.

SAR Motion Compensation Using GPS/IMU (GPS/IMU를 이용한 SAR 영상의 요동 보상 기법에 대한 연구)

  • Kim, Dong-Hyun;Park, Sang-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • This paper suggests a motion compensation technique using GPS/IMU data in order to compensate for phase error caused by undesired motion of radar platform. An actual flight trajectory would be deviate from an ideal straight-constant trajectory with a constant velocity for SAR imaging, due to pitch, roll and yaw motion of aircraft caused by turbulence. This leads to blurred SAR images due to inter-pulse phase errors as well as along-track velocity errors. If the motion compensation is carried out to reduce those errors, SAR image quality can be significantly improved. Simulation results show that the motion compensation technique introduced in this paper is an effective tool to improve SAR image quality against severe motion of radar platform.

A Nonlinear Friction Torque Compensation of Servo System with Double Speed Controller (이중 속도 제어 구조에 의한 서보 제어기의 비선형 마찰 토크 보상)

  • Lee Dong-Hee;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.612-619
    • /
    • 2004
  • Servo motor systems with ball-screw and timing-belt are widely used in NC, robot, FA and industrial applications. However, the nonlinear friction torque and damping effect in machine elements reduce the control performance. Especially tracking errors in trajectory control and very low velocity control range are serious due to the break-away friction and Stribeck effects. In this paper, a new double speed controller is proposed for compensation of the nonlinear friction torque. The proposed double speed controller has outer speed controller and inner friction torque compensator. The proposed friction torque compensator compensates the nonlinear friction torque with actual speed and speed error information. Due to the actual information for friction torque compensator without parameters and mathematical model of motor, proposed compensator is very simple structure and the stability is very high. The proposed compensator is verified by simulation and experimental results.

The Interpolation Method for the missing AIS Data of Ship

  • Nguyen, Van-Suong;Im, Nam-kyun;Lee, Sang-min
    • Journal of Navigation and Port Research
    • /
    • v.39 no.5
    • /
    • pp.377-384
    • /
    • 2015
  • The interpolation of missing AIS data can be used for recovering the lost data of a ship's state which is then able to produce useful information for VTS stations or other ships. Previous research has introduced some interpolating methods however there are some problems with regard to missing AIS data. This paper proposes one new method which includes linear interpolation, cubic Hermit interpolation and an identification mechanism to overcome some of those limitations, first AIS data regarding ship position, COG, SOG and HDG is divided into separate time series, then the characteristic of the missing data is investigated into through using an identification mechanism, an appropriate interpolation is selected to fit all the time series which matches the characteristics. Numerical experiments are carried out using real AIS data to validate the algorithm of this approach and the results are compared with the previous method, after which the actual missing area is suggested to be interpolated by the proposed method. The interpolation results show this approach can be applied well in practice.

A Study on the Fusion of WiFi Fingerprint and PDR data using Kalman Filter (칼만 필터를 이용한 WiFi Fingerprint 및 PDR 데이터의 연동에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.65-71
    • /
    • 2020
  • In order to accurately track the trajectory of the smartphone indoors and outdoors, the WiFi Fingerprint method and the Pedestrian Dead Reckoning method are fused. The former can estimate the absolute position, but an error occurs randomly from the actual position, and the latter continuously estimates the position, but there are accumulated errors as it moves. In this paper, the model and Kalman Filter equation to fuse the estimated position data of the two methods were established, and optimal system parameters were derived. According to covariance value of the system noise and measurement noise the estimation accuracy is analyzed. Using the measured data and simulation, it was confirmed that the improved performance was obtained by complementing the two methods.

Heat Transfer Analysis in a PDP Ventilation Chamber (PDP용 배기로내 열전달 현상 해석)

  • Park, Hyeong-Gyu;Jeong, Jae-Dong;Kim, Chan-Jung;Lee, Jun-Sik;Park, Hui-Jae;Jo, Yeong-Man;Jo, Hae-Gyun;Park, Deuk-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.347-355
    • /
    • 2001
  • A heat transfer analysis in a ventilation chamber of Plasma Display Panel(PDP) has been conducted. The process requirement is to precisely follow prescribed temperature trajectory while maintaining temperature uniformity for each panel. Firstly, experiment in a test chamber has been carried out and the results are compared with the unsteady 3D numerical data. Reasonable agreement was found, which suggested that the employed numerical model had its credibility in actual PDP ventilation processes. On this ground, a tact-type heating/cooling system was analyzed. The panel temperature in the 40$^{\circ}C$ tact-type system was more uniform than that in the 80$^{\circ}C$ one. For improving the uniformity of panel temperature, relocation of ventilation head to the rear part and inlet flow control are required. Comparison of full simulation of a cart and simplified simulation of one panel indicates the optimized panel pitch can also be predicted.