• Title/Summary/Keyword: Actual Load

Search Result 1,388, Processing Time 0.026 seconds

Probabilistic Safety Analysis of Cable-Stayed Bridge Using Measured Data (계측데이터를 이용한 사장교의 확률적 안전도 분석)

  • Yoon, Man-Geun;Cho, Hyo-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.175-182
    • /
    • 2008
  • In this paper, through the study and consideration of the recently prominent monitoring of cable stayed-bridge, practical but reasonable suggested for the evaluation of the probabilistic safety of the bridges using probable measured data from monitoring measurement system. It is shown in the paper that the live load effects can be evaluated using measured data of cable-stayed bridge and this the realistic probabilistic safety of the cable-stayed bridge could be assessed in term of element reliability and system reliability. As a practical method for the evalution of the system reliability of system cable-stayed bridges partial ETA method is uesd, which can find the critical failure path including combined failure modes of cable, deck and pylon. Compared with the conventional safety analysis method, the propsed approach may be considered as the practical method that shows the considerably actual and reasonable results the system redundancy of the structure.

Design of Vertically Adjustable Transition Piece of Concrete Gravity Based Substructure for Offshore Wind Turbine (수직도 조정이 가능한 콘크리트 중력식 해상풍력 지지구조물 연결부 설계)

  • Shim, WunBo;Ahn, Jin-Young;Kwak, Dong-Woo;Bae, Kyung-Tae;Zi, Goangseup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.42-51
    • /
    • 2018
  • Verticality problem during the installation process in offshore wind turbine substructures could degrade the safety of the whole structures. Therefore, in this paper, the design of vertically adjustable transition piece(T.P.), using a PS anchor and grout of anchor socket in concrete gravity based substructure(G.B.S.), was proposed. T.P. was designed for 5MW offshore wind trubine and can adjust up to $0.5^{\circ}$ in verticality, occurred during installation. The design plan for each members and design procedure for T.P. was proposed. Then based on the proposed design, actual design targeting sea of Jeju-island was carried out. Finally, by use of non-linear 3D Finite Element Analysis(F.E.A.), evaluation of design was performed. As a result of evaluation, by checking load transfer mechanism and stress of T.P, proposed design was considered safe up to $0.5^{\circ}$ of adjustment.

Understanding of Blast Resistant Design and Performance Evaluation of a Building designed for Conventional Loads (방폭설계의 이해 및 일반하중에 대해 설계된 건축물의 방폭성능 평가)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.83-90
    • /
    • 2018
  • Considering the increased threats from worldwide terrors and the increased demands on the blast resistant design of commercial buildings, this study is aimed at understanding the basic concept of blast resistant design and evaluating the blast performance with an actual design example. Although there are many differences between earthquake and blast loads, the design concept against both loads is similar in terms of allowing the plastic behavior of a structure and sharing the ductile detailing. Through the blast performance evaluation of a target building provided in this study, it is noted that a well-designed building for the conventional loads can have a certain level of blast resistance. However, this cannot be generalized since the blast load on a structure varies depending on the type of weapon, TNT equivalence, standoff distance, etc. Architectural planning with positioning the sacrificial structure or maintaining a sufficient standoff distance from the expected detonation is the simple and effective way of improving the blast resistance of a building.

Analysis of the Level and Competence Factors on Specialty Contractors' Employees (전문건설업체 종사자의 업무수행수준 및 필요역량요인 분석)

  • Hong, Sung-Ho;Jung, Dae-Woon;Oh, Chi-Don
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.2
    • /
    • pp.54-64
    • /
    • 2015
  • It is required to be enhancement of competitiveness for specialty contractors' employees due to specialty contractors are in charge of the actual construction work. The effective educational program for specialty contractors' employees is essential to improve the work performance of them. Therefore, the purpose of this study is to analyze level of work performance and find factors of core competence for specialty contractors' employees that can be utilized for development of effective educational program. The survey is based on CEO, Engineer and Manager in specialty contractors, and a questionnaire survey was performed to investigate the importance of job task, work load and degree of work difficulty as well as their core competence needs. The analysis result of this study can be utilized for development of effective educational program which is reflected the characteristics of specialty contractor's employees.

FATIGUE LIFE ESTIMATION OF IMPLANT USING A FINITE ELEMENT METHOD (유한요소법을 이용한 치아 임플랜트 피로수명 예측)

  • Han In-Sook;Son Jung-Hun;Yang Young-Soo;Lee Seung-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.414-420
    • /
    • 2006
  • Purpose : The purpose of this study is to use finite element analysis to predict the fatigue life of an implant system subjected to fatigue load by mastication (chewing force). The reliability and the stability of implant system can be defined in terms of the fatigue strength. Not only an implant is expensive but also it is almost impossible to correct after it is inserted. From a bio-engineering standpoint, the fatigue strength of the dental implant system must be evaluated by simulation (FEA). Material and Methods Finite element analysis and fatigue test are performed to estimate the fatigue strength of the implant system. Mesh of implant is generated with the actual shape and size. In this paper, the fatigue strength of implant system is estimated. U-fit (T. Strong, Korea, internal type). The stress field in implant is calculated by elastic-plastic finite element analysis. The equivalent fatigue stress, considering the contact and preload stretching of a screw by torque for tightening an abutment, is obtained by means of Sine's method. To evaluate the reliability of the calculated fatigue strength, fatigue test is performed. Results: A comparison of the calculated fatigue strength with experimental data showed the validity and accuracy of the proposed method. The initiation points of the fatigue failure in the implant system exist in the region of high equivalent fatigue stress values. Conclusion: The above proposed method for fatigue life estimation tan be applied to other configurations of the differently designed and improved implant. In order to prove reliability of prototype implant, fatigue test should be executed. The proposed method is economical for the prediction of fatigue life because fatigue testing, which is time consuming and precision-dependent, is not required.

Seismic performance of concrete moment resisting frame buildings in Canada

  • Kafrawy, Omar El;Bagchi, Ashutosh;Humar, Jag
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.233-251
    • /
    • 2011
  • The seismic provisions of the current edition (2005) of the National Building Code of Canada (NBCC) differ significantly from the earlier edition. The current seismic provisions are based on the uniform hazard spectra corresponding to 2% probability of exceedance in 50 years, as opposed to the seismic hazard level with 10% probablity of exeedance in 50 years used in the earlier edition. Moreover, the current code is presented in an objective-based format where the design is performed based on an acceptable solution. In the light of these changes, an assessment of the expected performance of the buildings designed according to the requirements of the current edition of NBCC would be very useful. In this paper, the seismic performance of a set of six, twelve, and eighteen story buildings of regular geometry and with concrete moment resisting frames, designed for Vancouver western Canada, has been evaluated. Although the effects of non-structural elements are not considered in the design, the non-structural elements connected to the lateral load resisting systems affect the seismic performance of a building. To simulate the non-structural elements, infill panels are included in some frame models. Spectrum compatible artificial ground motion records and scaled actual accelerograms have been used for evaluating the dynamic response. The performance has been evaluated for each building under various levels of seismic hazard with different probabilities of exceedance. From the study it has been observed that, although all the buildings achieved the life-safety performance as assumed in the design provisions of the building code, their performance characteristics are found to be non-uniform.

Nonlinear Analysis of Anchor Head for High Strength Steel Strand (고강도 강연선용 앵커헤드의 형상변화에 따른 비선형 거동특성 분석)

  • Noh, Myung-Hyun;Seong, Taek-Ryong;Kim, Jin-Kook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.163-173
    • /
    • 2012
  • This study covers the nonlinear analysis of anchor head for high strength prestressing strand and presents necessary process in improving the performance of anchor head. The surface of wedge for strand is contacted to the surface of the wedge hole on anchor head when it is fitted into the wedge hole, and the contact condition changes according to the level of load applied through the wedge. In order to analyze detailed behavior, nonlinear material model and contact element were used in analysis. It was found from the analysis that the behavior of anchor head is affected by the interaction with the wedge contacted so that the wedge in FE model should have the same figure as the actual object. Circular array of wedge hole presents better stress distribution than layer array even though the small difference in maximum deformation. Increment of thickness of anchor head and distance of wedge hole also improve the performance of anchor head.

Survey on the Malfunction of MCCB and ELB in Private Electrical Facilities (자가용 수용가에서 배선용 및 누전차단기 오동작에 대한 조사연구)

  • Yoo, Jae-Geun;Lee, Sang-Ick;Jeon, Jeong-Chay
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.87-93
    • /
    • 2005
  • Recently, nuisance tripping or malfunction of MCCB(Melded Case Circuit Breaker) and ELB(Electrical Leakage Breaker) is being increased according as load circuits and equipments of electrical customers are various and complicated, but investigation of actual conditions on malfunction of MCCB and ELB was not implemented This paper investigated causes and influences of malfunction of MCCB and ELB by making up a question to electrical safety managers of two hundred and eighteen private electrical facilities. The results show that users above $70[\%]$ experienced malfunction of MCCB and ELB, and causes of malfunction are in order aging(above $25(\%)$), nuisance tripping $(above\;22(\%))$, goods badness$(above\;20(\%))$, abnormal power like as harmonics$(above\;20(\%))$ and others $(about\;9(\%))$. Also, second damages due to failure of MCCB and ELB are in order goods production, equipment trouble, information loss, business and operation interrupt, and others. The results of this study can be used in making decisions regarding causes of MCCB and ELB trip.

Experimental Validation of Crack Growth Prognosis under Variable Amplitude Loads (변동진폭하중 하에서 균열성장 예측의 실험적 검증)

  • Leem, Sang-Hyuck;An, Dawn;Lim, Che-Kyu;Hwang, Woongki;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, crack growth in a center-cracked plate is predicted under mode I variable amplitude loading, and the result is validated by experiment. Huang's model is employed to describe crack growth with acceleration and retardation due to the variable loading effect. Experiment is conducted with Al6016-T6 plate, in which the load is applied, and crack length is measured periodically. Particle Filter algorithm, which is based on the Bayesian approach, is used to estimate model parameters from the experimental data, and predict the crack growth of the future in the probabilistic way. The prediction is validated by the run-to-failure results, from which it is observed that the method predicts well the unique behavior of crack retardation and the more data are used, the closer prediction we get to the actual run-to-failure data.

Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures (고온에 노출된 H-형강 압축재의 유한요소해석)

  • Lee, Swoo-Heon;Lee, Hee-Du;Choi, Jun-Ho;Shin, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.54-59
    • /
    • 2016
  • Steel is a structural material that is inherently noncombustible. On the other hand, it has high thermal conductivity and the strength and stiffness of the material are reduced significantly when exposed to fire or high temperatures. Because the yield strength and modulus of elasticity of steel are reduced by 70% at $350^{\circ}C$ and less than 50% at $600^{\circ}C$, the load-carrying capacity of steel structure at high temperature rapidly lose. To be accepted as a fire-resisting construction, the fire test should be performed at the certificate authority. On the other hand, the fire test on a full-scale structure is limited by time, space, and high-cost. The analytical method was verified by a comparison with the fire test of H-section columns under compression and thermal analysis based on a finite element method using the ABAQUS program, and the numerical analysis method reported in this study was suggested as a complement of an actual fire test.