• Title/Summary/Keyword: Actual Load

Search Result 1,392, Processing Time 0.026 seconds

Wind load combinations and extreme pressure distributions on low-rise buildings

  • Tamura, Yukio;Kikuchi, Hirotoshi;Hibi, Kazuki
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.279-289
    • /
    • 2000
  • The main purpose of this paper is to demonstrate the necessity of considering wind load combinations even for low-rise buildings. It first discusses the overall quasi-static wind load effects and their combinations to be considered in structural design of low-rise buildings. It was found that the maximum torsional moment closely correlates with the maximum along-wind base shear. It was also found that the instantaneous pressure distribution causing the maximum along-wind base shear was quite similar to that causing the maximum torsional moment, and that this asymmetric pressure pattern simultaneously accompanies considerable across-wind and torsional components. Secondly, the actual wind pressure distributions causing maximum quasi-static internal forces in the structural frames are conditionally sampled and their typical pressure patterns are presented.

A Study on Under-Frequency Load Shedding Scheme of Korea Electric Power System using TSAT (TSAT을 이용한 우리나라 계통의 저주파수 부하차단 방식 검토)

  • Lee, Kang-Wan;Bae, Joo-Cheon;Cho, Burm-Sup;Oh, Hwa-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.34-37
    • /
    • 2003
  • The frequency of power system will change when the load-generation equilibrium is disturbed. Insufficiency of generation from the imbalance between load and generation decreases the power system frequency. In case of the severe emergency, the under frequency load shedding scheme is applied for the power system defense plan. In this paper, we analyzed the dynamic characteristics of under frequency load shedding using new Transient Security Assessment Tool ; TSAT. We applied the actual UFLS scheme to these studies and considered the possible contingency.

  • PDF

An Analysis of Delayed Voltage Recovery Phenomenon according to the Characteristics of Motor Load in Korean Power System (모터부하 특성에 따른 국내 전력계통의 전압 지연 회복 현상 분석)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.178-182
    • /
    • 2016
  • FIDVR(Fault Induced Delayed Voltage Recovery) is a phenomenon that recovery of the system voltage level delays after the fault. Cause of FIDVR phenomenon is motor load characteristic about voltage and reactive power. In low voltage condition, the motor go to stall state that consume large amount of reactive power. As a result, the voltage recovery problem is that of repeated occurrences of sustained low voltage following faults on the system. In this paper, analysis the characteristics of the motor load. And using the korean power system actual data, perform a case studies to voltage delay recovery phenomenon alleviation method. Change of each parameters by analyzing the effect on system and selecting an influence parameter. In addition, dynamic characteristic analysis of the resulting difference in the proportion by the motor load in power systems, considering the effect on the voltage stability.

Particle Swarm Optimization-Based Peak Shaving Scheme Using ESS for Reducing Electricity Tariff (전기요금 절감용 ESS를 활용한 Particle Swarm Optimization 기반 Peak Shaving 제어 방법)

  • Park, Myoung Woo;Kang, Moses;Yun, YongWoon;Hong, Seonri;BAE, KUK YEOL;Baek, Jongbok
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.388-398
    • /
    • 2021
  • This paper proposes a particle swarm optimization (PSO)-based peak shaving scheme using energy storage system (ESS) for electricity tariff reduction. The proposed scheme compares the actual load with the estimated load consumption, calculates the additional output power that the ESS needs to discharge additionally to reduce peak load, and adds the input. In addition, in order to compensate for the additional power, the process of allocating power to the determined point is performed, and an optimization that minimizes the average of the load expected at the active power allocations using PSO so that the allocated value does not affect the peak load. To investigated the performance of the proposed scheme, case study of small and large load prediction errors was conducted by reflecting actual load data and load prediction algorithm. As a result, when the proposed scheme is performed with the ESS charge and discharge control to reduce electricity tariff, even when the load prediction error is large, the peak load is successfully reduced, and the peak load reduction effect of 17.8% and electricity tariff reduction effect of 6.02% is shown.

A Study on the Actual Equilibrium Analysis for Membrane Structures (막구조물의 준공평형 형상해석에 관한 연구)

  • 이장복;김재열;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.61-68
    • /
    • 2000
  • In general, the design of membrane structures takes three steps. The first is shape finding analysis which is determination of initial equilibrium geometry with uniform stresses. The second step involve the computation of the stress-deformation to get completed membrane under various load conditions. The third step is to divide the membrane structures into several plan strips from the initial equilibrium states. This procedure is needed because of the initial shape has usually undevelopable curved surface and is called as "cutting patterns generation". By introducing this work, the deformation due to the initial stress is removed and approximate cutting patterns are generated. In this approach, however, material properties is not considered, therefore the error between the design stresses and actual stresses during the fabrication of plan strips should be occurred. In this paper, actual equilibrium shape analysis procedure for HP shape models is presented. The deviations of stresses between the design stresses and actual stresses are estimated.

  • PDF

Study on Location-Specific Live Load Model for Verification of Bridge Reliability Based on Probabilistic Approach (교량의 신뢰성 검증을 위한 지역적 활하중 확률모형 구축)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.90-97
    • /
    • 2016
  • Purpose: Majority of bridges and roads in Gangwon Province have been carrying loads associated with heavy materials such as rocks, mining products, and cement. This location-specific live loads have contributed to the present situation of overloading, compared to other provinces in Korea. However, the bridges in Gangwon province are designed by national bridge design specification, without considering the location-specific live load characteristics. Therefore, this study focuses on the real traffic data accumulated on regional weighing station to verify the live load characteristics, including actual live load gross vehicle weight, axle weight axle spacings, and number of trucks. Methods: In order to take into account the location specific live load, a governmental weigh station (38th national highway Miro) have been selected and the passing truck data are processed. Based on the truck survey, trucks are categorized into 3 different shapes, and each shape has been idealized into normal distribution. Then, the resulting survey data are processed to predict the target maximum live load values, including the axle loads and gross vehicle weights in 75 years service life span. Results: The results are compared to the nationally used DB-24 live loads, and the results show that nationally recognized DB-24 live load does not sufficiently represent real traffic in mountaineous region in Gangwon province. Conclusion: The comparison results in the recommendation of location-specific live load that should be taken into account for bridge design and evaluation.

Ventilation Load Reduction Plan Using Cool Tube System Case (Cool Tube System 사례를 활용한 환기부하 절감방안)

  • Jeong, Min Yeong;Park, Jin Chul;Yang, Young Kwon
    • Land and Housing Review
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • In this study, the case analysis data on underground temperature are presented. In addition, numerical analysis of the ventilation load reduction plan was derived according to the residence schedule change for the building with cool tube. The research scope and method are as follows. The overall system principle was examined through reviewing the theory of the Cool tube system. Case study and analysis were conducted. Numerical simulation was used to examine the change in energy usage. Also, the change of load energy in case of varying amount of ventilation was derived based on actual building room schedule. When the Cool tube system was applied to the residential buildings, the cooling load was reduced from 3,331 kW to 193 kW, which showed a reduction effect of about 90%.The heating load was reduced from 42,276kW to 32,575kW by 23%.Also, result shows that the cooling load decreased by 24% and the heating load decreased by 66% when the number of ventilation according to the occupancy schedule was applied.

Utilizing Under Voltage Load Shedding Strategy to Prevent Delayed Voltage Recovery Problem in Korean Power System

  • Lee, Yun-Hwan;Oh, Seung-Chan;Lee, Hwan-Ik;Park, Sang-Geon;Lee, Byong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.60-67
    • /
    • 2018
  • The presence of induction motor loads in a power system may cause the phenomenon of delayed voltage recovery after the occurrence of a severe fault. A high proportion of induction motor loads in the power system can be a significant influence on the voltage stability of the system. This problem referred to as FIDVR(Fault Induced Delayed Voltage Recovery) is commonly caused by stall of small HVAC unit(Heating, Ventilation, and Air Conditioner) after transmission or distribution system failure. This delayed voltage recovery arises from the dynamic characteristics associated with the kinetic energy of the induction motor load. This paper proposes the UVLS (Under Voltage Load Shedding) control strategy for dealing with FIDVR. UVLS based schemes prevent voltage instability by shedding the load and can help avoid major economic losses due to wide-ranging cascading outages. This paper review recent topic about under voltage load shedding and compare decentralized load shedding scheme with conventional load shedding scheme. The load shedding strategy is applied to an actual system in order to verify the proposed FIDVR mitigation solution. Simulations demonstrate the effectiveness of the proposed method in resolving the problem of delayed voltage recovery in the Korean Power System.

Calculation of Land Category Area and Pollution Loads according to Real Land Usage using High Resolution Satellite Image (고해상도 영상자료를 이용한 실제토지이용에 따른 지목면적 및 부하량 산정)

  • Park, Jae Hong;Lee, Su Woong;Park, Ju Hyun;Rhew, Doug Hee;Jung, Dong Il;Choi, Hye Mi;Jeon, Woo Song
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.193-204
    • /
    • 2009
  • The study was conducted investigation on land of D-dong in N city which is an urban area and D myeon of N city which is a suburban area, based on high resolution satellite image, to find out actual land usage. As for D-dong in N city, different rate between actual usage and official land information was 0.5~4.8% in terms of 5 major land types (paddy field, farm, ground, forest, and others). D myeon in N city posted 1.4~8.4%, which is higher than that of its counterpart. As for unit load, "land" which is large in terms of load presented a big difference between official information and actual usage. On the other hand, the levels of paddy, field, forest and others posted only small changes in load. In case of T-P, in particular, unit of each land type is lower than BOD and T-N, showing almost no changes in pollution loads.

A Study on Exhaust Gas Characteristics of Heavy-duty Diesel Engines through Actual Vehicle Application of Non-influenced Temperature Condition Type Active Regeneration Method (온도조건 비영향형 복합재생방식 DPF의 실차적용을 통한 대형디젤기관의 배출가스 특성 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.53-59
    • /
    • 2024
  • Cars are one of the main causes of air pollution in large cities, and 34.6% of domestic air pollution emissions come from mobile sources, of which cars account for 69.6%. In particular, the importance of nitrogen oxides (NOx) and particulate matter (PM), which are major pollutants in diesel vehicles, is increasing due to their high contribution to emissions. Therefore, in this study, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation was solved by applying a complex regeneration DPF that is not affected by temperature conditions to large diesel vehicles with higher driving time and engine displacement than small and medium-sized vehicles. And the feasibility of application to large diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the reduction efficiency test on the actual vehicle durability product, PM showed a reduction efficiency of 84% to 86%, and the reduction efficiency of gaseous substances showed a high reduction efficiency of over 90%. The actual vehicle applicability test was completed with three driving patterns: village bus vehicle, police car, and road-going construction equipment vehicle, and no device problems occurred until the end of the test. Both load and no-load smoke measurement results showed a smoke reduction efficiency of over 96%.