• 제목/요약/키워드: Activity of Xylanase

검색결과 258건 처리시간 0.026초

Fungal bioconversion of Korean food wastes for the production of animal feed additive enzymes

  • 정윤승;정상원;조아라;권순우;한승호
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.529-532
    • /
    • 2001
  • Korean food waste, one of the abundantly available but environmentally problematic organic wastes in Korea, was utilized as solid-substrate by fungal strain Aspergillus niger ATcC 6275 for the production of enzymemixture containing amylase, cellulase and xylanase. The enzyme mixture can be used as high value-added animal feed. Solid-state fermentation method yielded a 84-fold enhancement in xylanase activity compared with submerged fermentation method. The effect of incubation period, incubation temperature, pH of medium, moisture content, inoculum size and enrichment of the medium with nitrogen and carbon sources were observed for optimal production of these enzymes The optimal amylase activity of 33.10 U/g, cellulase activity of 24.41 U/g, xylanase activity of 328.84 U/g were obtained at 8 days incubation with 50%(w/w) soy bean flake, with incubation temperature of $25^{\circ}C$, pH of 6.38, optimal moisture content of 55% and with inoculum size of $3.8{\times}10^6$spore/g. Enzyme activities were enhanced when ImM $CaSO_4$, 2% Malt extract and 2% galactose were added as mineral, nitrogen and carbon enrichment respectively.

  • PDF

Cloning, Characterization, and Expression of Xylanase A Gene from Paenibacillus sp. DG-22 in Escherichia coli

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.29-36
    • /
    • 2007
  • The xynA gene encoding the xylanase A of Paenibacillus sp. DG-22 was isolated with a DNA probe obtained by PCR amplification, using degenerated primers deduced from the amino acid residues of the known N-terminal region of the purified enzyme and the conserved region in the family 11 xylanases. The positive clones were screened on the LB agar plates supplemented with xylan, by the Congo-red staining method. The xynA gene consists of a 630-bp open reading frame encoding a protein of 210 amino acids, and the XynA preprotein contains a 28-residues signal peptide whose cleavage yields a l82-residues mature protein of a calculated molecular weight of 20,000Da and pI value of 8.77. The cloned DNA fragment also has another ORF of 873 nucleotides that showed 76% identity to the putative transcriptional activator of Bacillus halodurans C-125. Most of the xylanase activity was found in the periplasmic space of E. coli. The xynA gene was subcloned into pQE60 expression vector to fuse with six histidine-tag. The recombinant xylanase A was purified by heating and immobilized metal affinity chromatography. The optimum pH and temperature of the purified enzyme were 6.0 and $60^{\circ}C$, respectively. This histidine-tagged xylanase A was less thermostable than the native enzyme.

Purification, Characterization and Chemical Modification of the Xylanase from Alkali-tolerant Bacillus sp. YA-14

  • Park, Young-Seo;Yum, Do-Young;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권1호
    • /
    • pp.41-48
    • /
    • 1994
  • The xylanase from alkali-tolerant Bacillus sp. YA-14 was purified to homogeneity by CM-cellulose, Sephadex G-50, and hydroxyapatite column chromatographies. The molecular weight of the purified enzyme was estimated to be 20, 000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme slightly hydrolyzed carboxymethyl cellulose and Avicel, but did not hydrolyze soluble starch, dextran, pullulan, and ${\rho}-nitrophenyl-{\beta}$-D-xylopyranoside. The maximum degree of hydrolysis by enzyme for birchwood xylan and oat spelts xylan were 47 and 40%, respectively. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.03 mg/ml and 5.0 mg/ml, respectively. The activity of the xylanase was inhibited reversibly by $HgCl_2$, and showed competitive inhibition by N-bromosuccinimide, which probably indicates the involvement of tryptophan residue in the active center of the enzyme. The Xylanase was identified to be xylose-producing endo-type xylanase and did not show the enzymatic activities which cleave the branch point of the xylan structure.

  • PDF

Purification, Characterization, and cDNA Cloning of Xylanase from Fungus Trichoderma Strain SY

  • Min, Shin-Young;Kim, Bong-Gyu;Lee, Chan;Hur, Hor-Gil;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.890-894
    • /
    • 2002
  • A xylanase-producing Trichoderma strain was isolated from soil. Xylanase from Trichoderma strain SY was purified 21-fold to an apparent homogeneity, with a $17.4\%$ yield. The optimum pH and temperature were determined to be 5.5 and $50^{\circ}C$, respectively, and its molecular weight was 21-kDa by SDS-PAGE. The corresponding gene, named xyl, was cloned by RT-PCR. DNA blot analysis of xyl showed that this gene is present as a single copy. The amino acid sequence of the Xyl protein showed similarity to those of other xylanases derived from various fungi. mRNA of xyl was highly expressed when this fungus was grown on cellulose or xylan as a sole carbon source, but undetectable when grown on sucrose. Extracts of Escherichia coli cells expressing xyl were found to have xylanase activity. It was confirmed that xyl from this isolate encodes xylanase.

Purification and Characterization of a Thermostable Xylanase from Fomitopsis pinicola

  • Shin, Keum;Jeya, Marimuthu;Lee, Jung-Kul;Kim, Yeong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권10호
    • /
    • pp.1415-1423
    • /
    • 2010
  • An extracellular xylanase was purified to homogeneity by sequential chromatography of Fomitopsis pinicola culture supernatants on a DEAE-Sepharose column, a gel filtration column, and then on a MonoQ column with fast protein liquid chromatography. The relative molecular mass of the F. pinicola xylanase was determined to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by size-exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the xylanase had a pH optimum of 4.5 and a temperature optimum of $70^{\circ}C$. The enzyme showed a $t_{1/2}$ value of 33 h at $70^{\circ}C$ and catalytic efficiency ($k_{cat}=77.4\;s^{-1}$, $k_{cat}/K_m$=22.7 mg/ml/s) for oatspelt xylan. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase (GH) family 10, indicating that the F. pinicola xylanase is a member of GH family 10.

Production of Endoglucanase, Beta-glucosidase and Xylanase by Bacillus licheniformis Grown on Minimal Nutrient Medium Containing Agriculture Residues

  • Seo, J.;Park, T.S.;Kim, J.N.;Ha, Jong K.;Seo, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권7호
    • /
    • pp.946-950
    • /
    • 2014
  • Bacillus licheniformis was grown in minimal nutrient medium containing 1% (w/v) of distillers dried grain with soluble (DDGS), palm kernel meal (PKM), wheat bran (WB) or copra meal (CM), and the enzyme activity of endoglucanase, ${\beta}$-glucosidase, xylanase and reducing sugars was measured to investigate a possibility of using cost-effective agricultural residues in producing cellulolytic and hemicellulolytic enzymes. The CM gave the highest endoglucanase activity of 0.68 units/mL among added substrates at 48 h. CM yielded the highest titres of 0.58 units/ml of ${\beta}$-glucosidase, compared to 0.33, 0.23, and 0.16 units/mL by PKM, WB, and DDGS, respectively, at 72 h. Xylanase production was the highest (0.34 units/mL) when CM was added. The supernatant from fermentation of CM had the highest reducing sugars than other additional substrates at all intervals (0.10, 0.12, 0.10, and 0.11 mg/mL respectively). It is concluded that Bacillus licheniformis is capable of producing multiple cellulo- and hemicellololytic enzymes for bioethanol production using cost-effective agricultural residues, especially CM, as a sole nutrient source.

Thermostable Xylanase from Marasmius sp.: Purification and Characterization

  • Ratanachomsri, Ukrit;Sriprang, Rutchadaporn;Sornlek, Warasirin;Buaban, Benchaporn;Champreda, Verawat;Tanapongpipat, Sutipa;Eurwilaichitr, Lily
    • BMB Reports
    • /
    • 제39권1호
    • /
    • pp.105-110
    • /
    • 2006
  • We have screened 766 strains of fungi from the BIOTEC Culture Collection (BCC) for xylanases working in extreme pH and/or high temperature conditions, the so-called extreme xylanases. From a total number of 32 strains producing extreme xylanases, the strain BCC7928, identified by using the internal transcribed spacer (ITS) sequence of rRNA to be a Marasmius sp., was chosen for further characterization because of its high xylanolytic activity at temperature as high as $90^{\circ}C$. The crude enzyme possessed high thermostability and pH stability. Purification of this xylanase was carried out using an anion exchanger followed by hydrophobic interaction chromatography, yielding the enzyme with >90% homogeneity. The molecular mass of the enzyme was approximately 40 kDa. The purified enzyme retained broad working pH range of 4-8 and optimal temperature of $90^{\circ}C$. When using xylan from birchwood as substrate, it exhibits $K_m$ and $V_{max}$ values of $2.6{\pm}0.6\;mg/ml$ and $428{\pm}26\;U/mg$, respectively. The enzyme rapidly hydrolysed xylans from birchwood, beechwood, and exhibited lower activity on xylan from wheatbran, or celluloses from carboxymethylcellulose and Avicel. The purified enzyme was highly stable at temperature ranges from 50 to $70^{\circ}C$. It retained 84% of its maximal activity after incubation in standard buffer containing 1% xylan substrate at $70^{\circ}C$ for 3 h. This thermostable xylanase should therefore be useful for several industrial applications, such as agricultural, food and biofuel.

양송이 배지로부터 분리된 Bacillus subtilis NO12의 특성 (Isolation and characterization of Bacillus subtilis NO12 from button mushroom substrates)

  • 김혜수;박현영;이찬중;공원식;조수정
    • 한국버섯학회지
    • /
    • 제15권4호
    • /
    • pp.249-253
    • /
    • 2017
  • Cellulase와 xylanase 분비능이 우수한 세균을 분리하기 위하여 부여군 석성면 지역의 양송이 재배농장으로부터 수확후배지를 수집하였다. 양송이 수확후배지로부터 12종의 균주를 분리하였으며 이 중 cellulase와 xylanase 활성이 가장 우수한 균주 NO12를 최종 선발하였다. 분리균 NO12의 생리적 생화학적 특성은 Bacillus ID kit와 MicroLog system을 이용하여 조사하였으며 분리균 NO12는 Bacillus subtilis와 유사한 특징을 나타내었다. 분리균 NO12의 16S rDNA 염기서열도 B. subtilis와 99.2%의 상동성을 나타내었다. 이와 같은 결과를 종합하여 분리균 NO12는 B. subtilis NO12로 동정되었다. 분리균이 분비하는 cellulase와 xylanase 활성은 분리균이 증식함에 따라 대수증식기 중반부터 급격히 증가하였고 정지기에 진입하면 효소활성이 더 이상 증가하지 않는 것으로 나타났으며 xylanase 활성은 대수증식기 초기부터 지속적으로 증가하여 대수증식기 중반에 최대활성을 나타내었다.

Bacillus subtilis NC1 유래 cellulase와 xylanase의 특성 규명 및 효소 유전자의 규명 (Characterization of Cellulase and Xylanase from Bacillus subtilis NC1 Isolated from Environmental Soil and Determination of Its Genes)

  • 박창수;강대욱;최낙식
    • 생명과학회지
    • /
    • 제22권7호
    • /
    • pp.912-919
    • /
    • 2012
  • Carboxymethylcellulose (CM-cellulose)와 Beechwood xylan을 각각 기질로 사용하여 trypan blue를 첨가하여 제작한 Agar-LB 배지 상에서 명확한 활성환을 형성하는 균주를 cellulase와 xylanase 생산 균주로 단리하였다. 단리한 균주 유래의 16S rRNA 유전자 및 API 50 kit를 분석한 결과 Bacillus subtilis와 약 99.5%의 높은 상동성을 보였기에 본 균주를 Bacillus subtilis로 동정하여 B. subtilis NC1로 명명하였다. B. subtilis NC1 유래 cellulase와 xylanase는 CM-cellulose와 Beechwood xylan에 대하여 각각 높은 효소 활성을 보였으며, 두 효소 모두 pH 5.0과 $50^{\circ}C$의 조건하에서 가장 높은 효소 활성을 보였다. B. subtilis NC1 균주 유래 cellulase와 xylanase 유전자를 cloning하기 위하여 shot-gun cloning 방법을 이용하여 B. subtilis NC1 염색체 DNA로부터 효소 유전자를 cloning하여 유전자 배열을 규명한 결과 cellulase 유전자는 아미노산 499개를 암호화하는 1,500 bp의 open reading frame (ORF)으로 이루어져 있었으며, 아미노산 배열로부터 추정되는 분자량은 55,251 Da 이었다. 그리고, xylanase에 대한 유전자는 아미노산 422개를 암호화하는 1,269 bp의 ORF로 이루어져 있었으며 유전자 유래 아미노산 배열로부터 추정되는 단백질 분자량은 47,423 Da 이었다. 두 효소의 아미노산 배열을 이용하여 상동성을 검토한 결과 cellulase는 glycoside hydrolase family (GH) 5에 속하는 cellulase와 xylanase는 GH30에 속하는 xylanase와 높은 상동성을 나타내었다.

Bleaching of Hardwood Kraft Pulp by Xylanase Pretreatment

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권4호
    • /
    • pp.65-71
    • /
    • 1999
  • This study was carried out to investigate the effect of xylanase pretreatment of the unbleached hardwood kraft pulp during the conventional Chlorine-Extraction- Hypochlorite (CEH) bleaching on pulp property. Optimum bleaching condition was evaluated by using Novozym produced from the fungus Humicola insolens. Also the effect of chelating agent prior to enzyme treatment was analyzed. The kappa number of enzymatic bleached pulp at the enzyme charge 10 IU/ml was slightly similar to that of bleached pulp without enzyme. By enzyme treatment, the chlorine charge in conventional CEH bleaching process of hardwood KP could be reduced by 17%, while no adverse effect on pulp yield and strength was. The optimum condition for enzyme pretreatment was 10 IU/ml xylanase charge, 3 to 4 hrs treatment, and 2% pulp consistency. In sugar composition in the enzyme pretreated pulp, arabinose and mannose were not much different, but more xylose was retained. This high content of hemicellulose in pulp seems to play an important role in pulp properties. The pulp pretreatment by chelating agent prior to enzyme treatment could improve the enzyme activity and enhance the bleaching effect at 0.2% diethylenetriamine pentaacetic acid (DTPA) charges.

  • PDF