• 제목/요약/키워드: Activity concentration ratio

검색결과 650건 처리시간 0.02초

Action of Ascorbic acid on Sodium-Potassium activated ATPase in Red Cell Membrane (적혈구막의 NaK ATPase의 활성도에 대한 ascorbic acid의 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • 제12권1_2호
    • /
    • pp.15-23
    • /
    • 1978
  • The action of ascorbic acid on the sodium Plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action if ascorbic acid on the ATPase activity The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is stimulated by ascorbic acid and the concentration of ascorbic acid for maximal activity is about 8 mM. 2. The activating effect of ascorbic acid on the ATPase activaty, with a given concentration of sodium in the medium, is increased by raisins the potassium concentration but activity ratio is decreased. 3. The activating effect of ascorbic acid on the ATPase activity, with a given concentration of potassium in the medium, is increased by raising the sodium concentration but activity ratio is decreased. 4. The action of ascorbic acid on the ATPase activity is stimulated by calcium ions and activity ratio is increased by raising the calcium concentration. 5. The activating effect of ascorbic acid on the ATPase activity was not related to the sulfhydryl group of cysteine or the hydroxyl group of threonine. 6. The activating effect of ascorbic acid on the ATPase activity is due to amino group and carboxyl group of the enzyme of NaK ATPase.

  • PDF

Action of Pilocarpine on Sodium-Potassium activated ATPase in Rabbit Red Cell Membrane (Pilocarpine이 토끼 적혈구막의 NaK ATPase의 활성도에 대한 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • 제11권1호
    • /
    • pp.11-20
    • /
    • 1977
  • The action of pilocarpine on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of pilocarpine on the ATPase activity. The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is stimulated by pilocarpine, and the concentration of pilocarpine for maximal activity is about 3 mM. The pH optimum for the pilocarpine sensitive component is 8.0. 2. The activating effect of pilocarpine on the ATPase, with a given concentration of sodium .in the medium, is increased by raising the potassium concentration but activity ratio is decreased 3. The activating effect of pilocarpine on the ATPase, with a given concentration of Potassium in the medium, is increased by raising the sodium concentration but activity ratio is decreased 4. The NaK ATPase activity is increased by small amounts of calcium but decreased by 'larger amounts. The activity ratio of the enzyme by pilocarpine is decreased by small amounts .of calcium but decreased by larger amounts. 5. The activating effect of pilocarpine on the ATPase was not related to the sulfhydryl group of cysteine, the hydroxyl group of threonine or the imidazole group of histidine. 6. The activating effect of pilocarpine on the ATPase is due to amino group and carboxyl group of the enzyme of NaK ATPase

  • PDF

Action of Anthraquinone on Sodium-Potassium activated -ATPase in Rabbit Red Cell Membrane- (Anthraquinone이 토끼 적혈주막의 NaK ATPase웨 활성도에 대한 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 1977
  • Action of anthraquinone on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of anthraquinone on the ATPase activity. The following results were obtained 1. The activity of the NaK ATPase from red cell membrane is inhibited by anthraquinone and the concentration of anthraquinone for maximal inhibition is about 5mM. 2. The ratio of inhibition of NaK ATPase by anthraquinone, with a giving concentration of sodium in the medium, is increased by raising the potassium concentration. 3. The ratio of inhibition of NaK ATPase by anthraquinone, with a given concentration of potassium in the medium, is increased by raising the sodium concentration. 4. The action of anthraquinone on the NaK ATPase activity is inhibited by calcium ions and the ratio of inhibition is increased by small amounts of calcium but almost constant by larger amounts. 5. The inhibitory action of anthraquinone on the NaK ATPase activity was not related to the amino group of lysine, the hydroxyl group of threonine or the imidazole group of histidine. 6. The inhibitory action of anthraquinone on the ATPase activity is due to sulfhydryl group or the carboxyl group of the enzyme of NaK ATPase.

  • PDF

Action of Serotonin on Sodium-Potassium Activated ATPase in Rabbit Red Cell Membrane (토끼 적혈구막의 NaK ATPase의 활성도에 대한 serotonin의 작용)

  • Chung, Soon-Tong;Park, Chul-Bin;Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • 제10권1호
    • /
    • pp.25-34
    • /
    • 1976
  • The action of serotonin on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated. The experiments were also designed to determine the mechanism of action of serotonin on the ATPase activity. The following results were obtained. 1) The NaK ATPase activity of rabbit red cell ghosts is stimulated by low concentration of serotonin but inhibited by higher concentration, and the concentration of serotonin for maximal activity is about 2mM. The pH optimum for the serotonin sensitive component is 8.0. 2) The activating effect of serotonin on the ATPase, with a given concentration of sodium in the medium, is increased by raising the potassium concentration but the ratio of activity is decreased. 3) The activating effect of serotonin on the ATPase, with a given concentration of potassium in the medium, is increased by raising the sodium concentration but the ratio of activity is decreased. 4) The ATPase activity is increased by small amounts of calcium but inhibited by larger amounts and the ratio of activity by serotonin is decreased by small amounts of calcium but increased by larger amounts. 5) The action of serotonin on the ATPase activity was not related to the amino group of lysine, the hydroxyl group of threonine, the carboxyl group of aspartic acid, or the imidazole group of histidine. 6) The action of serotonin on the ATPase activity is due to sulfhydryl group of the enzyme of NaK ATPase.

  • PDF

Effect of Saponin on Sodium-Potassium activated ATPase in Rabbit Red Cell Membrane (Saponin이 토끼 적혈구막의 $Na^{+}-K^{+}-ATPase$의 활성도에 미치는 영향)

  • Kang, Byoung-Nam;Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • 제8권1호
    • /
    • pp.67-76
    • /
    • 1974
  • The effect of saponin on the sodium plus potassium activated ATPase activity was studied in the rabbit red cell ghosts and the experiments were also designed to determine the mechanism of action of saponin on the APTase activity. The following results were observed. 1. The ATPase activity of rabbit red cell ghosts is inhibited by low concentration of saponin but increased by high concentration. The activating effect of saponin on the $Na^{+}-K^{+}-ATPase$ activity is inhibited by ouabain but the stimulation of the $Mg^{++}-ATPase$ by high concentration of saponin is not inhibited by ouabain. 2. The activity ratio of $Na^{+}-K^{+}-ATPase$ by high concentration of saponin is decreased by raising the potassium concentration, and is increased by raising the sodium concentration. 3. The ATPase activity is increased by small amounts of calcium but inhibited by larger amounts. The activity ratio of the enzyme by saponin is decreased by raising the calcium concertration 4. The action on the ATPase activity was not related to the amino group of lysine, the hydroxyl group of threonine, the imidazole group of histidine, or the carboxyl group of aspartic acid. 5. The action of saponin on the ATPase activity is due to sulfhydryl group of the enzyme of $Na^{+}-K^{+}-ATPase$.

  • PDF

Action of Aconite on Sodium-Potassium Activated ATPase in Rabbit Red Cell Membrane (토끼 적혈구막의 NaK ATPase의 활성도에 대한 aconite의 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • 제10권1호
    • /
    • pp.15-24
    • /
    • 1976
  • The action of aconite on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of aconite on the ATPase activity. The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is stimulated by aconite, and the concentration of aconite for maximal activity is about 80 mg%. The pH optimum for the aconite sensitive component is 8.0. 2. The activating effect of aconite on the ATPase, with a given concentration of sodium in the medium, is increased by raising the potassium concentration but activity ratio is decreased. 3. The activating effect of aconite on the ATPase, with a given concentration of potassium in the medium, is increased by raising the sodium concentration but activity ratio is decreased. 4. The action of aconite on the ATPase activity is inhibited by calcium ions and the effect of inhibition is increased by small amounts of calcium but decreased by larger amounts. 5. The activating effect of aconite on the ATPase was not related to the sulfhydryl group of cysteine, the amino group of lysine, the hydroxyl group of threonine or the imidazole group of histidine. 6. The action of aconite on the ATPase activity is due to carboxyl group of the enzyme of NaK ATPase.

  • PDF

Action of Theobromine on Sodium-Potassium activated ATPase in Red Cell Membrane (Theobromine이 적혈구막의 NaK ATPase의 활성도에 대한 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • 제12권1_2호
    • /
    • pp.25-34
    • /
    • 1978
  • The action of theobromine on the sodium plus potassium activated ATPase activity In the rabbit red cell membrane has teen investigated and the experiments were also designed to determine the mechanism of action of theobromine on the ATPase activity. The following results were observed. 1. The activity of the NaK ATPase from red fell membrane is stimulated by theobromine, and the concentration of theobromine for maximal activity is about 3mM. 2. The activating effect of theobromine on the ATPase, with a given concentration of potassium in the medium, is increased by raising the sodium concentration but activity ratio is decreased. 3. The activating effect of theobromine on the ATPase, with a given concentration of sodium in the medium. is increased by the raising the potassium concentration but activity ratio is decreased. 4. The NaK ATPase activity is increased by small amounts of calcium but decreased by larger amounts. The activity of the enzyme by theobromine is increased by small amounts of calcium but decreased by larger amounts. 5. The activating effect of theobromine on the ATPase was not related to the hydroxyl group of threonine and imidazole group of histicline. 6. The activating effect of theobromine on the ATPase is due to sulfhydryl group, amino group and carboxyl group of the enzyme of NaK ATPase.

  • PDF

Action of Acetylcholine on Sodium-Potassium Activated ATPase in Rabbit Red Cell Membrane (Acetylcholine이 토끼 적혈구막의 NaK ATPase의 활성도에 대한 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • 제10권2호
    • /
    • pp.1-10
    • /
    • 1976
  • The action of acetylcholine on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of acetylcholine on the ATPase activity. The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is inhibited by acetylcholine. 2. The ratio of inhibition of NaK ATPase by acetylcholine is decreased by raising the potassium concentration, and is increased by raising the sodium concentration. 3. The ATPase activity is increased by small amounts of calcium but inhibited by larger amounts. The ratio of inhibition of the enzyme by acetylcholine is increased by raising the calcium concentration. 4. The inhibitory action of acetylcholine on the NaK ATPase activity was not related to the sulfhydryl group of cysteine, the hydroxyl group of threonine, or the carboxyl group of aspartic acid. 5. The inhibitory action of acetylcholine on the ATPase activity is due to amino group of the enzyme of NaK ATPase.

  • PDF

Monitoring on Extraction Yields and Functional Properties of Brassica oleracea var. capita Extracts

  • Kim, Hyun-Ku;Lee, Gee-Dong;Kwon, Joong-Ho;Kim, Kong-Hwan
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.836-840
    • /
    • 2005
  • Extraction characteristics of Bonus species of Brassica oleracea var. capita and functional properties of corresponding extract were monitored by response surface methodology (RSM). Maximum extraction yield of 44.07% was obtained at ratio of solvent to sample of 27.94 mL/g, ethanol concentration of 24.35%, and extraction temperature of $55.21^{\circ}C$. At ratio of solvent to sample, ethanol concentration, and extraction temperature of 21.11 mL/g, 58.53%, and $68.83^{\circ}C$, respectively, maximum electron-donating ability was 48.44%. Maximum inhibitory effect on tyrosinase was 68.94% at ratio of solvent to sample, ethanol concentration, and extraction temperature of 24.08 mL/g, 10.49%, and $78.71^{\circ}C$, respectively. Superoxide dismutase (SOD) showed maximum pseudo-activity of 24.78% at ratio of solvent to sample of 22.66 mL/g, ethanol concentration of 45.69%, and extraction temperature of $93.81^{\circ}C$. Based on superimposition of four-dimensional RSM with respect to extraction yield, electron-donating ability, and pseudo-activity of SOD, optimum ranges of extraction conditions were ratio of solvent to sample of 20-30 mL/g, ethanol concentration of 35-65%, and extraction temperature of $50-80^{\circ}C$.

Effect of Ginseng on Sodium-Potassium activated ATPase in Rabbit Red Cell Membrane (인삼이 토끼 적혈구막의 $Na^{+}-K^{+}-ATPase$의 활성도에 미치는 영향)

  • Kang, Byoung-Nam;Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • 제8권1호
    • /
    • pp.55-65
    • /
    • 1974
  • The effect of ginseng on the ATPase activity of rabbit ref cell membrane has been investigated. The experiments were also designed to determine whether the components of ginseng could be attributed to the effect on ATPase activity which dependent upon sodium plus potassium and is sensitive to ouabain. The following results were observed. 1. The activity of the $Na^{+}-K^{+}-ATPase$ from red cell membrane is stimulated by ginseng, and the concentration of ginseng for half-maximal activity is about 15 mg%. The pH optimum for the ginseng sensitive component is 7.6. 2. The portion of the enzyme activity stimulated by ginseng is completely abolished by ouabain. 3. The activating effect of ginseng on the ATPase, with a given concentration of sodium in the medium, is increased by raising the potassium concentration but activity ratio is decreased. 4. The activating effect of ginseng on the ATPase, with a given concentration of potassium in the medium, is increased by raising the sodium concentration but the activity ratio is decreased. 5. The ATPase activity is increased by small amounts of calcium but inhibited by larger amounts and the rate of activity by ginseng is constant. 6. The action of ginseng on the ATPase activity was not related to the sulfhydryl group of cysteine, the amino group of lysine, the imidazole group of histidine, the quanidinium group of arginine, the carboxyl group of aspartic acid, or the hydroxyl group of threonine. 7. The activating effect of ginseng on the ATPase activity may be not due to a saponin which is contained in ginseng.

  • PDF