• Title/Summary/Keyword: Activity Sequencing

Search Result 523, Processing Time 0.036 seconds

Purification and Characterization of an Antimicrobial Substance from Bacillus subtilis HH28 Antagonistic to Bacillus cereus (Bacillus cereus를 억제하는 Bacillus subtilis HH28의 항균물질 정제와 특성규명)

  • Cha, Hyun A;Chung, Dawn;Hong, Sung Wook;Chung, Kun Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.393-401
    • /
    • 2014
  • A bacterium producing antimicrobial substance was isolated from cheonggukjang. The bacterium was identified as a strain of Bacillus subtilis by 16S rDNA sequencing and designated as Bacillus subtilis HH28. The antimicrobial substance produced from Bacillus subtilis HH28 was purified by 0-80% ammonium sulfate precipitation, DEAE-sepharose FF column chromatography, and Sephacryl S-200 HR gel chromatography. The molecular weight of the purified antimicrobial substance was estimated to be approximately 3,500 Da using Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis and direct detection analysis. Antimicrobial substance from B. subtilis HH28 not only inhibited B. cereus, but also Listeria monocytogenes and Vibrio parahaemolyticus. The purified antimicrobial substance was stable at $40-80^{\circ}C$, and between pH 2 and 8. Antimicrobial activity of the purified substance was completely destroyed by treatment of protease, proteinase K, and pronase E, indicating that it is proteinaceous.

Antibacterial Effect on Oral Normal flora of Phytoncide from Chamaecyparis Obtusa (구강 상주균에 대한 편백 피톤치드의 항균효과)

  • Auh, Q-Schick;Hong, Jung-Pyo;Chun, Yang-Hyun
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • The present study was performed to observe the effect of phytoncide on oral normal microflora and the inhibitory effect of the surviving resident oral bacteria on F. nucleatum. In this study, saliva from each of 20 healthy subjects was treated with 1% phytoncide from Japanese Hinoki (Chamaecyparis obtusa Sieb. et Zucc.). The surviving salivary bacterium were isolated on blood agar plates and identified by 16S rDNA sequencing. In order to select inhibitory isolates against F. nucleatum, the isolates from the phytoncide-treated saliva were cultured with F. nucleatum. The results are as follows: 1. Among the 200 surviving resident oral bacterium, 70(35.0%) bacterium inhibit the growth of F. nucleatum on blood agar plates. 2. Among the 70 bacterium which inhibit F. nucleatum, Streptococcus salivarius was 41.3%(45/109), Streptococcus sanguinis was 28%.(7/25), Streptococcus mitis was 20%(3/15), Streptococcus parasanguinis was 33.3%(3/9), Streptococcus Alactolyticus was 100%(8/8), Streptococcus vestibularis was 28.6%(2/7) and Streptococcus sp. was 50%(2/4). Taken together, among the surviving resident oral bacterium, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus mitis were mainly observed to inhibit F. nucleatum. and they may exert an additional inhibitory activity against the periodontopathic bacterium. Therefore, phytoncide can be used to prevent and cease the progress of periodontal disease, halitosis. Thus it is expected to promote oral health.

Isolation of Acinetobacter calcoaceticus BP-2 Capable of Degradation of Bisphenol A (Bisphenol A 분해균주 Acinetobacter calcoaceticus BP-2의 분리 및 bisphenol A 분해 특성)

  • Kwon, Gi-Seok;Kim, Dong-Geol;Lee, Jung-Bok;Shin, Kee-Sun;Kum, Eun-Joo;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1158-1163
    • /
    • 2006
  • Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, has been widely used as a monomer for production of epoxy resins and polycarbonate plastics, and final products of BPA include adhesives, protective coatings, paints, optical lens, building materials, compact disks and other electrical parts. Since BPA is a toxic chemical to elicit acute cell cytotoxicity and chronic endocrine disrupting activity, the degradation of BPA has been focused during last decades. To overcome the problem of photo-, and chemical-degradation of BPA, in this study, a bacterium that is able to biodegrade BPA, was isolated. The bacterium, isolated froln the soil of plastic factory, was identified as Acinetobacter calcoaceticus (strain BP-2) based on physiological and 16S rDNA sequencing analysis. A. calcoaceticus BP-2 was able to grow in the presence of $1140{\mu}g\;ml^{-1}$ BPA. Biodegradation experiments showed that BP-2 mineralized BPA via 4-hydroxybenzoic acid and 4-hydroxyacetophenone, and average degradation rate was $53.3{\mu}g\;ml^{-1}\;day^{-1}$ under optimal conditions (pH 7 and $30^{\circ}C$). In high density resting cell $(3.5g-dcw.1^{-1})$ experiments, the maximal degradation rate was increased to $89.7{\mu}g\;ml^{-1}\;h^{-1}$. Our results suggest that BP-2 has high potential as a catalyst for practical BPA bioremediation.

Identification and Characterization of an Endophytic Strain of Streptomyces from Rice Roots (Orysa sativa L.) (벼(Orysa sativa L.) 뿌리로부터 분리된 내생 Streptomyces 균주의 동정 및 특성)

  • Kim, Jae-Heon;Lee, Jun-Kwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.375-380
    • /
    • 2011
  • We isolated an endophytic actionmycete from root tissues of rice plant collected from paddy field near Dankook University, Cheonan, Korea. Surface sterilized roots were laid on the selective agar plates and incubated. The powdery actinomycete colonies appeared on the root surface after four weeks incubation. We isolated a strain JK-5 among them and could determine its taxonomical position as Streptomyces diastaticus subsp. ardesiacus by using 16S ribosomal DNA sequencing. The chemotaxonomical and morphological studies confirmed the taxonomical position of the strain JK-5. The shape of aerial hyphae was flexible and they contained spore chains with more than 30 smooth spherical spores per chain. Cell walls contained LL-diaminopimelic acid. There was no characteristic sugar in whole-cell hydrolysates. The major fatty acids were anteiso-15:0, anteiso-17:0 and iso-16:0. The specific menaquinones, MK-9 ($H_6$), MK-9 ($H_8$), were detected. The GC content was 72%. Antifungal activities of the strain JK-5 were relatively strong against fungal plant pathogens. The endophytic growth of the strain JK-5 was confirmed by SEM observation of the root and stem of the infected rice plant.

Characterization of CH4-oxidizing and N2O-reducing Bacterial Consortia Enriched from the Rhizospheres of Maize and Tall Fescue (옥수수와 톨페스큐 근권 유래의 메탄 산화 및 아산화질소 환원 세균 컨소시움 특성)

  • Lee, Soojung;Kim, Seoyoung;Kim, Ye Ji;Lee, Yun-Yeong;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.225-238
    • /
    • 2021
  • CH4-oxidizing and N2O-reducing bacterial consortia were enriched from the rhizosphere soils of maize (Zea mays) and tall fescue (Festuca arundinacea). Illumina MiSeq sequencing analysis was performed to comparatively analyze the bacterial communities of the consortia with those of the rhizosphere soils. Additionally, the effect of root exudate on CH4 oxidation and N2O reduction activities of the microbes was evaluated. Although the inoculum sources varied, the CH4-oxidizing and N2O-reducing consortia derived from maize and tall fescue were similar. The predominant methanotrophs in the CH4-oxidizing consortia were Methylosarcina, Methylococcus, and Methylocystis. Among the N2O-reducing consortia, the representative N2O-reducing bacteria were Cloacibacterium, Azonexus, and Klebsiella. The N2O reduction rate of the N2O-reducing consortium from maize rhizosphere and tall fescue rhizosphere increased by 1.6 and 2.7 times with the addition of maize and tall fescue root exudates, respectively. The CH4 oxidization activity of the CH4-oxidizing consortia did not increase with the addition of root exudates. The CH4-oxidizing and N2O-reducing consortia can be used as promising bioresources to mitigate non-CO2 greenhouse gas emissions during remediation of oil-contaminated soils.

Acanthamoeba in Southeast Asia - Overview and Challenges

  • Bunsuwansakul, Chooseel;Mahboob, Tooba;Hounkong, Kruawan;Laohaprapanon, Sawanya;Chitapornpan, Sukhuma;Jawjit, Siriuma;Yasiri, Atipat;Barusrux, Sahapat;Bunluepuech, Kingkan;Sawangjaroen, Nongyao;Salibay, Cristina C.;Kaewjai, Chalermpon;Pereira, Maria de Lourdes;Nissapatorn, Veeranoot
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.4
    • /
    • pp.341-357
    • /
    • 2019
  • Acanthamoeba, one of free-living amoebae (FLA), remains a high risk of direct contact with this protozoan parasite which is ubiquitous in nature and man-made environment. This pathogenic FLA can cause sight-threatening amoebic keratitis (AK) and fatal granulomatous amoebic encephalitis (GAE) though these cases may not commonly be reported in our clinical settings. Acanthamoeba has been detected from different environmental sources namely; soil, water, hotspring, swimming pool, air-conditioner, or contact lens storage cases. The identification of Acanthamoeba is based on morphological appearance and molecular techniques using PCR and DNA sequencing for clinico-epidemiological purposes. Recent treatments have long been ineffective against Acanthamoeba cyst, novel anti-Acanthamoeba agents have therefore been extensively investigated. There are efforts to utilize synthetic chemicals, lead compounds from medicinal plant extracts, and animal products to combat Acanthamoeba infection. Applied nanotechnology, an advanced technology, has shown to enhance the anti-Acanthamoeba activity in the encapsulated nanoparticles leading to new therapeutic options. This review attempts to provide an overview of the available data and studies on the occurrence of pathogenic Acanthamoeba among the Association of Southeast Asian Nations (ASEAN) members with the aim of identifying some potential contributing factors such as distribution, demographic profile of the patients, possible source of the parasite, mode of transmission and treatment. Further, this review attempts to provide future direction for prevention and control of the Acanthamoeba infection.

Inhibition Effect on Pathogenic Microbes and Antimicrobial Resistance of Probiotics (Probiotics의 병원성 미생물에 대한 억제효과와 항균제 내성)

  • Kim, Jae Soo;Yuk, Young Sam;Kim, Ga Yeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.294-300
    • /
    • 2019
  • To investigate the inhibition effect on pathogenic microbes and the antimicrobial resistance of probiotics, a total of 140 probiotics were isolated from 35 kinds of Korean commercially available Kimchi. Of those, L. plantarum was identified from 53 strains (37.9%), E. faecium from 27 strains (19.3%), and L. rhamnosus from 7 strains (5.0%) using 16S rRNA gene sequencing. Sixty nine strains (49.3%) showed overall antimicrobial activity against pathogenic microbes, namely S. Typhi, S. Enteritidis, E. coli O157:H7, S. flexneri, NAG Vibrio, Listeria monocytogenesis, Y. enterocolitica, S. aureus, S. pyogenes, G. vaginalis, C. albicans, and P. acne. The proportions of L. plantarum, E. faecium, and L. rhamnosus strains to pathogenic microbes were 75.5%, 40.7%, and 28.6%, respectively. In addition, a resistance test with 18 antimicrobial agents using a disk diffusion assay revealed a resistance incidence of 98.6% for nalidixic acid, 83.6% for streptomycin, 75.7% for gentamicin 73.6% for vancomycin, 72.1% for norfloxacin, and 67.9% for ciprofloxacin. In conclusion, L. plantarum, L. sakei, and E. faecium strains with various antimicrobial activities and broad antibiotic resistance are useful for treating diarrhea in long-term inpatients and for the alternative use for treating Candida species female vaginitis.

Antibacterial activity of lactic acid bacteria against biogenic amine-producing Bacillus spp. isolated from traditional fermented soybean paste (전통 발효 된장으로부터 분리된 바이오제닉 아민 생성 바실러스균에 대한 유산균의 항균 활성)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.398-409
    • /
    • 2018
  • In the present study, biogenic amine-forming Bacillus spp. and bacteriocin-producing lactic acid bacteria (LAB) isolated from Doenjang were generally identified through 16S rRNA gene sequencing, and the physicochemical and microbiological characteristics of cheonggukjang prepared using the isolated strains were investigated. Biogenic amine-producing bacteria from the samples were identified as Bacillus licheniformis DB102, B. subtilis DB203, B. stearothermophilus DB206, B. pumilus DB209, B. subtilis DB310, B. coagulans DB311, B. cereus DB313, B. amyloliquefaciens DB714, B. amylolique-faciens DB915, B. licheniformis DB917, B. cereus DB1019, B. subtilis DB1020, B. megaterium DB1022. The bacteriocin-producing LAB showed antibacterial effect against biogenic amine-producing Bacillus spp. were identified as Lactobacillus plantarum DLA205, L. brevis DLA501, L. fermentum DLA509, L. acidophilus DLA703, and Enterococcus faecalis DLA804. The bacteriocin produced by the LAB significantly decreased the viable numbers and the amine production ability of the biogenic amine-forming Bacillus spp. in a concentration dependent manner. Therefore, the pH, ammonia nitrogen and biogenic amine content of cheonggukjang prepared by mixed culture of the LAB and Bacillus spp. were significantly decreased compared to the control group.

Assessment of the level and identification of airborne molds by the type of water damage in housing in Korea (국내 주택에서 물 피해 유형에 따른 부유곰팡이 농도 수준 평가 및 동정 분석)

  • Lee, Ju Yeong;Hwang, Eun Seol;Lee, Jeong-Sub;Kwon, Myunghee;Chung, Hyen Mi;Seo, SungChul
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.355-361
    • /
    • 2018
  • Mold grows more easily when humidity is higher in indoor spaces, and as such is found more often on wetted areas in housing such as walls, toilets, kitchens, and poorly managed spaces. However, there have been few studies that have specifically assessed the level of mold in the indoor spaces of water-damaged housing in the Republic of Korea. We investigated the levels of airborne mold according to the characteristics of water damage types and explored the correlation between the distribution of mold genera and the characteristics of households. Samplings were performed from January 2016 to June 2018 in 97 housing units with water leakage or condensation, or a history of flooding, and in 61 general housing units in the metropolitan and Busan area, respectively. Airborne mold was collected on MEA (Malt extract agar) at flow rate of 100 L/min for 1 min. After collection, the samples were incubated at $25^{\circ}C$ for 120 hours. The cultured samples were counted and corrected using a positive hole conversion table. The samples were then analyzed by single colony culture, DNA extraction, gene amplification, and sequencing. By type of housing, concentrations of airborne mold were highest in flooded housing, followed by water-leaked or highly condensed housings, and then general housing. In more than 50% of water-damaged housing, the level of airborne mold exceeded the guideline of Korea's Ministry of Environment ($500CFU/m^3$). Of particular concern was the fact that the I/O ratio of water-damaged housing was greater than 1, which could indicate that mold damage may occur indoors. The distribution patterns of the fungal species were as follows: Penicillium spp., Cladosporium spp. (14%), Aspergillus spp. (13%) and Alternaria spp. (3%), but significant differences of their levels in indoor spaces were not found. Our findings indicate that high levels of mold damage were found in housing with water damage, and Aspergillus flavus and Penicillium brevicompactum were more dominant in housing with high water activity. Comprehensive management of flooded or water-damaged housing is necessary to reduce fungal exposure.

The Antioxidant and Skin-whitening Effects of Saccharomyces cerevisiae FT4-4 Isolated from Berries Grown in Sunchang (화장품 소재로서 순창 베리류 유래 Sacchromyces cerevisiae FT4-4의 항산화 활성 및 미백 효과)

  • Seo, Ji won;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.175-182
    • /
    • 2021
  • Saccharomyces lysate has the well-known function of soothing the skin in various ways: it is an anti-irritant and can treat skin care conditions, such as skin whitening and antioxidative activity. However, data on the safety for use of Saccharomyces lysate in cosmetics and skin care products are still limited. To design a new cosmetic material with antioxidant and skin-whitening effects, 80 yeast strains were isolated from berries grown in Sunchang. Among the isolates, the FT4-4 strain, which exhibited superior biological activities, was selected for further experiments. The FT4-4 strain was identified as Saccharomyces cerevisiae by 18S rRNA gene sequencing analysis. S. cerevisiae FT4-4 showed higher DPPH radical-scavenging (51.41%), superoxide dismutase (62.23%), and tyrosinase inhibition (64.75%) activities. The highest yield of biomass (3.16 g/l) and maximum growth rate of S. cerevisiae FT4-4 were observed within 16 h. Furthermore, the cytotoxicity potential of S. cerevisiae FT4-4 on B16F10 melanoma cells was measured by an MTT assay, and the results indicated that S. cerevisiae FT4-4 had a capacity to inhibit melanin up to 72.02% at an initial 10 mg/ml concentration. These results suggest that S. cerevisiae FT4-4 could be a promising candidate as a multi-functional material for application in the cosmetic industry, especially because of its antioxidant and skin-whitening effects.