• Title/Summary/Keyword: Activity Sequencing

Search Result 526, Processing Time 0.024 seconds

Isolation and Cytotoxic Potency of Endophytic Fungi Associated with Dysosma difformis, a Study for the Novel Resources of Podophyllotoxin

  • Hoa Thi Tran;Giang Thu Nguyen;Hong Ha Thi Nguyen;Huyen Thi Tran;Quang Hong Tran;Quang Ho Tran;Ngoc Thi Ninh;Phat Tien Do;Ha Hoang Chu;Ngoc Bich Pham
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.389-398
    • /
    • 2022
  • Endophytic fungi are promising sources for the production of podophyllotoxin-an important anticancer compound, replacing depleted medical plants. In this study, the endophytes associated with Dysosma difformis-an ethnomedicinal plant species were isolated to explore novel sources of podophyllotoxin. Fifty-three endophytic fungi were isolated and identified by morphological observation and ITS-based rDNA sequencing, assigning them to 27 genera in 3 divisions. Fusarium was found the most prevalent genus with a colonization frequency of 11.11%, followed by Trametes (9.26%) and Penicillium (7.41%). Phylogenetic trees were constructed for the endophytic fungi community in two collection sites, Ha Giang and Lai Chau, revealing the adaptation of the species to the specific tissues and habitats. Cytotoxic activity of endophytic fungal extracts was investigated on cancer cell lines such as SK-LU-1, HL-60, and HepG2, demonstrating strong anti-cancer activity of six isolates belonging to Penicillium, Trametes, Purpureocillium, Aspergillus, and Ganoderma with IC50 value of lower than 10 ㎍/mL. The presence of podophyllotoxin was indicated in Penicillium, Trametes, Aspergillus and for the first time in Purpureocillium and Ganoderma via high-performance liquid chromatography, which implied them as a potential source of this anticancer compound.

Antibacterial Activity of Streptomyces Strains Isolated from Different Regions of Jordan

  • Hala Khyami-Horani;Amal Al-Aboudi;Musa Abu Zarga;Monther Sadder;Halima Othman
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.474-483
    • /
    • 2023
  • Members of the genus Streptomyces produce more than 70% of antibiotics. The rise in antibiotic resistance globally enhanced the search for novel species with the ability to produce new bioactive compounds. This study was initiated to investigate different regions in Jordan for previously uncultured and rare Streptomyces species capable of producing novel antimicrobial compounds especially active against bacteria resistant to antibiotics. A total of 191 Streptomyces strains were isolated from 26 soil samples collected from different geographic regions in Jordan. Isolates were characterized based on colony and cellular morphology as well as using 16S rRNA gene sequencing. These isolates were screened for their ability to produce antibiotics by the perpendicular-cross streak method, and then tested by well diffusion method against tested pathogens. Fifty-four isolates showed potential to produce antimicrobial products especially active against resistant bacteria, 20.1% of the isolates showed inhibitory effect against Staphylococcus aureus, 16.9% against clinical MSSA strains, and 18.0% against MRSA: whereas only 4.2% against Esherichia coli, 3.2% against Klebsiella pneumonia, 2.7% against Pseudomonas aeruginosa, and 10.0% against clinical Candida albicans. Three isolates were selected for further identification due to their antibacterial activity against S. aureus, MRSA, and MSSA. These isolates were identified as follows; Streptomyces aburaviensis DSa3, Streptomyces alboniger SAb7 and Streptomyces misionensis ZAb2, based on cultural, biochemical characteristics and molecular analysis of the 16S rRNA.

A Study on the Biological Treatment of RO Concentrate Using Aerobic Granular Sludge (호기성 그래뉼 슬러지를 이용한 RO 농축수의 생물학적 처리에 관한 연구)

  • Kim, Hyun Gu;Ahn, Dae Hee;Cho, Eun Ha;Kim, Han Yong;Ye, Hyoung Young;Mun, Jung Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.79-86
    • /
    • 2016
  • The purpose of this study is to efficiently improve biological sequencing batch reactor (SBR) system of high-concentrated nitrate nitrogen in reverse osmosis (RO) concentrates by total dissolved solids (TDS) regulation. Since a laboratory-scale SBR system had been operated, we had analyzed specific denitrification rate (SDNR) and specific oxygen uptake rate (SOUR) for microbial activity in according to various injection concentration of TDS. As a result, higher injection concentration of TDS decreased SDNR, and delayed denitrification within denitrification process. Moreover, the higher injection concentration of TDS was, the lower microbial activity was during operation of laboratory-scale SBR system. Therefore, the regulation of TDS injection concentration is necessary to improve efficiency of nitrate nitrogen in the biological SBR system, and treatment of calcium ion ($Ca^{2+}$) is also specifically focused to remove nitrate nitrogen. Moreover, analytical data of SDNR and SOUR can be the effective kinetic design parameters to application of biological treatment of RO concentrate by aerobic granular sludge (AGS).

Outbreaks of Imipenem-Resistant Acinetobacter baumannii Producing Carbapenemases in Korea

  • Jeong Seok-Hoon;Bae Il-Kwon;Park Kwang-Ok;An Young-Jun;Sohn Seung-Ghyu;Jang Seon-Ju;Sung Kwang-Hoon;Yang Ki-Suk;Lee Kyung-Won;Young Dong-Eun;Lee Sang-Hee
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.423-431
    • /
    • 2006
  • Among 53 Acinetobacter baumannii isolates collected in 2004, nine imipenem-resistant isolates were obtained from clinical specimens taken from patients hospitalized in Busan, Korea. Nine carbapenemase-producing isolates were further investigated in order to determine the mechanisms underlying resistance. These isolates were then analyzed via antibiotic susceptibility testing, microbiological tests of carbapenemase activity, pI determination, transconjugation test, enterobacterial repetitive consensus (ERIC)-PCR, and DNA sequencing. One outbreak involved seven cases of infection by A. baumannii producing OXA-23 ${\beta}-lactamase$, and was found to have been caused by a single ERIC-PCR clone. During the study period, the other outbreak involved two cases of infection by A. baumannii producing IMP-1 ${\beta}-lactamase$. The two clones, one from each of the outbreaks, were characterized via a modified cloverleaf synergy test and an EDTA-disk synergy test. The isoelectric focusing of the crude bacterial extracts detected nitrocefin-positive bands with pI values of 6.65 (OXA-23) and 9.0 (IMP-1). The PCR amplification and characterization of the amplicons via direct sequencing showed that the clonal isolates harbored $bla_{IMP-1}$ or $bla_{oxA-23}$ determinants. The two clones were characterized by a multidrug resistance phenotype that remained unaltered throughout the outbreak. This resistance encompassed penicillins, extended-spectrum cephalosporins, carbapenems, monobactams, and aminoglycosides. These results appear to show that the imipenem resistance observed among nine Korean A. baumannii isolates could be attributed to the spread of an IMP-lor OXA-23-producing clone. Our microbiological test of carbapenemase activity is a simple method for the screening of clinical isolates producing class D carbapenemase and/or class B $metallo-{\beta}-lactamase$, in order both to determine their clinical impact and to prevent further spread.

First Detection of $bla_{IMP-1}$ in Clinical Isolate Multiresistant Acinetobacter baumannii from Korea

  • Jeong Seok-Hoon;Bae Il-Kwon;Sohn Seung-Ghyu;Park Kwang-Ok;An Young-Jun;Sung Kwang-Hoon;Jang Seon-Ju;Heo Myong-Jin;Yang Ki-Suk;Lee Sang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1377-1383
    • /
    • 2006
  • Among 46 Acinetobacter baumannii isolates collected in 2004, two imipenem-resistant isolates were obtained from clinical specimens taken from patients hospitalized in Busan, Republic of Korea. Two carbapenemase-producing isolates were further investigated to determine the mechanism of resistance. These isolates were analyzed by antibiotic susceptibility testing, microbiological tests of carbapenemase activity, determination of pI, transconjugation test, enterobacterial repetitive consensus (ERIC)-PCR, and DNA sequencing. Two cases of infection by A. baumannii producing the IMP-1 ${\beta}$-lactamase were detected. The isolates were characterized by a modified cloverleaf synergy test and EDTA-disk synergy test. Isoelectric focusing of crude bacterial extracts revealed nitrocefin-positive bands with a pI value of 9.0. PCR amplification and characterization of the amplicons by direct sequencing indicated that the isolates carried a $bla_{IMP-l}$ determinant. The isolates were characterized by a multidrug resistance phenotype, including penicillins, extended-spectrum cephalosporins, carbapenems, and aminoglycosides. These results indicate that the observed imipenem resistance of two Korean A. baumannii isolates was due to the spread of an IMP-1-producing clone. Our microbiological test of carbapenemase activity is simple to screen class B metallo-${\beta}$-lactamase-producing clinical isolates to determine their clinical impact and to prevent further spread. This study shows that the $bla_{IMP-l}$ resistance determinant, which is emerging in Korea, may become an emerging therapeutic problem, since clinicians are advised not to use extended-spectrum cephalosporins, imipenem, and aminoglycosides. This observation emphasizes the importance of having effective control measures in Asian hospitals, such as early detection of colonized patients, isolation procedures, and a judicious use of antibiotics.

Solid-phase PEGylation for Site-Specific Modification of Recombinant Interferon ${\alpha}$-2a : Process Performance, Characterization, and In-vitro Bioactivity (재조합 인터페론 알파-2a의 부위 특이적 수식을 위한 고체상 PEGylation : 공정 성능, 특성화 및 생물학적 활성)

  • Lee, Byung-Kook;Kwon, Jin-Sook;Lee, E.K.
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • In 'solid-phase' PEGylation, the conjugation reaction occurs as the proteins are attached to a solid matrix, and thus it can have distinct advantages over the conventional, solution-phase process. We report a case study: rhIFN-${\alpha}$-2a was first adsorbed to cation exchange resin and then N-terminally PEGylated by aldehyde mPEG of 5, 10, and 20 kD through reductive alkylation. After the PEGylation, salt gradient elution efficiently recovered the mono-PEGylate in a purified form from the unwanted species such as unmodified IFN, unreacted PEG, and others. The mono-PEGylation and its purification were integrated in a single chromatographic step. Depending on the molecular weight of the mPEG aldehyde used, the mono-PEGylation yield ranged 50-64%. We could overcome the major problems of random, or uncontrollable, multi-PEGylation and the post-PEGylation purification difficulties associated with the solution-phase process. N-terminal sequencing and MALDI-TOF MS confirmed that a PEG molecule was conjugated only to the N-terminus. Compared with the unmodified IFN, the mono-PEGylate showed the reduced anti-viral activity as measured by the cell proliferation assay. The bioactivity was reduced more as the higher molecular weight PEG was conjugated. Immunoreactivity, evaluated indirectly by antibody binding activity using a surface plasmon resonance biosensor, also decreased. Nevertheless, trypsin resistance as well as thermal stability was considerably improved.

Resource of Food Waste using Indigenous Bacteria Isolated from Soils (토양으로부터 분리한 토착유효미생물을 이용한 음식물쓰레기의 자원화)

  • Lee, Sang-Woo;Ham, Sun Nyeoo;Shin, Taek-Soo;Kim, Hye-Kyung;Yeon, Ik-Jun;Kim, Kawng-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This study was conducted to investigate feasibility of feedstuff for animal using food waste by fermentation mechanism of indigenous microorganism. To achieve this purpose, indigenous bacteria was isolated from soils to use as an inoculant. Enzyme test was performed to verify activity of amylase, protease and lipase using isolated bacteria. Bacteria(H1, D1), which vigorously express the enzyme activity, was selected and used in the fermentation experiments of food waste. From the analysis of 16s rDNA sequencing, H1 and D1 were identified as Bacillus subtilis and Paenibacillus polymyxa, respectively. In the fermentation experiment, food waste was mixed with rice bran and popped rice to control moisture and nutrient content. Isolated bacteria(B. subtilis and P. polymyxa) was used as an inoculant. From the measured data such as temperature, pH and ORP, it can be verified that food waste adding the indigenous bacteria was effectively fermented. From the nutritional analysis of manufactured feedstuff, it showed that the contents of crude protein, crude fat and crude fiber were enough to use as feedstuff for animal. In addition, harmful components such as Pb, Hg, Cd, aflatoxin and salmonella concentration were not exceeded permitted standards. Therefore, fermented food waste using indigenous bacteria can be used as feedstuff.

Antifungal Activity of Benzoic Acid from Bacillus subtilis GDYA-1 against Fungal Phytopathogens (Bacillus subtilis GDYA-1로부터 분리한 benzoic acid의 식물병원성 곰팡이에 대한 항균활성)

  • Yoon, Mi-Young;Seo, Kook-Hwa;Lee, Sang-Heon;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Cha, Byeong-Jin;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • A bacterial strain antagonistic to some fungal phytopathogens was isolated from the stem of a Persimmon tree in Yeongam, Korea. This bacterium was identified as Bacillus subtilis by 16S rRNA gene sequencing and designated as B. subtilis GDYA-1. In in vivo experiment, the fermentation broth exhibited antifungal activities against Magnaporthe oryzae on rice plants, Phytophthora infestans on tomato plants, and Puccinia recondita on wheat plants. We isolated one antifungal compound and its chemical structure was determined by mass and $^1H$-NMR spectral data. The antifungal substance was identified as benzoic acid. It inhibited mycelial growth of M. oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and P. capsici with minimum inhibition concentration (MIC) values, ranging from 62.5 to 125 ${\mu}g/ml$. Moreover, the substance effectively suppressed Phytophthora blight of red pepper caused by P. capsici in a pot experiment. To the author's knowledge, this is the first report on the antifungal activity of benzoic acid against phytopathogenic fungi. Benzoic acid and B. subtilis GDYA-1 may contribute to environmental-friendly protect crops from phytopathogenic fungi.

Isolation, Identification, and Fermentation Characteristics of Bacillus sp. with High Protease Activity from Traditional Cheonggukjang (전통 청국장으로부터 protease 분비능이 우수한 Bacillus sp. 균주의 분리 동정 및 발효 특성)

  • Ahn, Yong-Sun;Kim, Yong-Suk;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.82-87
    • /
    • 2006
  • Twenty one strains strongly producing protease were isolated from Korean traditional Cheonggukjang. Eight strains selected by sensory evaluation on Cheonggukjang prepared with isolated strains were identified with based on biochemical properties a and 16S rDNA sequencing. Identified strains were Bacillus subtilis MB4, and Bacillus amyloliquefaciens A1, A2, B1, MC1, SB2, SC1, and SD1. Protease activities, important strain selection factor, were higher in Cheongjukjang prepared with B. subtilis MB4 (179.6 Unit) and B. amyloliquefaciens SB2 (201.9 Unit) than commercial traditional Cheonggukjang (97.9 Unit). Sensory evaluation revealed Cheonggukjang prepared with B. subtilis MB4 had flavor very similar to commercial traditional Cheonggukjang. Cheonggukjang prepared with B. suhtilis MB4 (0.0006 Pa s) and commercial traditional Cheonggukjang (0.0002 Pa s) revealed lower viscosities than those of Cheonggukjang prepared with B. amyloliquefaciens SB2, MC1, B1, A1, SD1, A2, and SC1 (0.006 to 0.008 Pa s at 1001/s. Results show Cheonggukjang could be prepared using single strain of B. subtilis MB4, maintaining high protease activity and very similar sensory and viscosity qualities with those of commercial traditional Cheonggukjang.

ssc-miR-185 targets cell division cycle 42 and promotes the proliferation of intestinal porcine epithelial cell

  • Wang, Wei;Wang, Pengfei;Xie, Kaihui;Luo, Ruirui;Gao, Xiaoli;Yan, Zunqiang;Huang, Xiaoyu;Yang, Qiaoli;Gun, Shuangbao
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.801-810
    • /
    • 2021
  • Objective: microRNAs (miRNAs) can play a role in a variety of physiological and pathological processes, and their role is achieved by regulating the expression of target genes. Our previous high-throughput sequencing found that ssc-miR-185 plays an important regulatory role in piglet diarrhea, but its specific target genes and functions in intestinal porcine epithelial cell (IPEC-J2) are still unclear. We intended to verify the target relationship between porcine miR-185 and cell division cycle 42 (CDC42) gene in IPEC-J2 and to explore the effect of miR-185 on the proliferation of IPEC-J2 cells. Methods: The TargetScan, miRDB, and miRanda software were used to predict the target genes of porcine miR-185, and CDC42 was selected as a candidate target gene. The CDC42-3' UTR-wild type (WT) and CDC42-3'UTR-mutant type (MUT) segments were successfully cloned into pmirGLO luciferase vector, and the luciferase activity was detected after co-transfection with miR-185 mimics and pmirGLO-CDC42-3'UTR. The expression level of CDC42 was analyzed using quantitative polymerase chain reaction and Western blot. The proliferation of IPEC-J2 was detected using cell counting kit-8 (CCK-8), methylthiazolyldiphenyl-tetrazolium bromide (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays. Results: Double enzyme digestion and sequencing confirmed that CDC42-3'UTR-WT and CDC42-3'UTR-MUT were successfully cloned into pmirGLO luciferase reporter vector, and the luciferase activity was significantly reduced after co-transfection with miR-185 mimics and CDC42-3'UTR-WT. Further we found that the mRNA and protein expression level of CDC42 were down-regulated after transfection with miR-185 mimics, while the opposite trend was observed after transfection with miR-185 inhibitor (p<0.01). In addition, the CCK-8, MTT, and EdU results demonstrated that miR-185 promotes IPEC-J2 cells proliferation by targeting CDC42. Conclusion: These findings indicate that porcine miR-185 can directly target CDC42 and promote the proliferation of IPEC-J2 cells. However, the detailed regulatory mechanism of miR-185/CDC42 axis in piglets' resistance to diarrhea is yet to be elucidated in further investigation.