• 제목/요약/키워드: Active technology

검색결과 6,706건 처리시간 0.034초

텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안 (Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining)

  • 김익준;이준호;김효민;강주영
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.149-169
    • /
    • 2020
  • 현 정부의 주요 국책사업 중 하나인 도시재생 뉴딜사업은 매년 100 곳씩, 5년간 500곳을대상으로 50조를 투자하여 낙후된 지역을 개발하는 것으로 언론과 지자체의 높은 이목이 집중되고 있다. 그러나, 현재 이 사업모델은 면적 규모에 따라 "우리동네 살리기, 주거정비지원형, 일반근린형, 중심시가지형, 경제기반형" 등 다섯 가지로 나뉘어 추진되어 그 지역 본래의 특성을 반영하지 못하고 있다. 국내 도시재생 성공 키워드는 "주민 참여", "지역특화" "부처협업", "민관협력"이다. 성공 키워드에 따르면 지자체에서 정부에게 도시재생 사업을 제안할 때 지역주민, 민간기업의 도움과 함께 도시의 특성을 정확히 이해하고 도시의 특성에 어울리는 방향으로 사업을 추진하는 것이 가장 중요하다는 것을 알 수 있다. 또한 도시재생 사업 후 발생하는 부작용 중 하나인 젠트리피케이션 문제를 고려하면 그 지역 특성에 맞는 도시재생 유형을 선정하여 추진하는 것이 중요하다. 이에 본 연구는 '도시재생 뉴딜 사업' 방법론의 한계점을 보완하기 위해, 기존 서울시가 지역 특성에 기반하여 추진하고 있는 "2025 서울시 도시재생 전략계획"의 도시재생 유형을 참고하여 도시재생 사업지에 맞는 도시재생 유형을 추천하는 시스템을 머신러닝 알고리즘을 활용하여 제안하고자 한다. 서울시 도시재생 유형은 "저이용저개발, 쇠퇴낙후, 노후주거, 역사문화자원 특화" 네 가지로 분류된다 (Shon and Park, 2017). 지역 특성을 파악하기 위해 총 4가지 도시재생 유형에 대해 사업이 진행된 22개의 지역에 대한 뉴스 미디어 10만여건의 텍스트 데이터를 수집하였다. 수집된 텍스트를 이용하여 도시재생 유형에 따른 지역별 주요 키워드를 도출하고 토픽모델링을 수행하여 유형별 차이가 있는 지 탐색해 보았다. 다음 단계로 주어진 텍스트를 기반으로 도시재생 유형을 추천하는 추천시스템 구축을 위해 텍스트 데이터를 벡터로 변환하여 머신러닝 분류모델을 개발하였고, 이를 검증한 결과 97% 정확도를 보였다. 따라서 본 연구에서 제안하는 추천 시스템은 도시재생 사업을 진행하는 과정에서 신규 사업지의 지역 특성에 기반한 도시재생 유형을 추천할 수 있을 것으로 기대된다.

빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단 (Animal Infectious Diseases Prevention through Big Data and Deep Learning)

  • 김성현;최준기;김재석;장아름;이재호;차경진;이상원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.137-154
    • /
    • 2018
  • 조류인플루엔자와 구제역 같은 동물감염병은 거의 매년 발생하며 국가에 막대한 경제적 사회적 손실을 일으키고 있다. 이를 예방하기 위해서 그간 방역당국은 다양한 인적, 물적 노력을 기울였지만 감염병은 지속적으로 발생해 왔다. 최근 빅데이터와 딥러닝 기술을 활용하여 감염병의 예측모델을 개발하고자 하는 시도가 시작되고 있지만, 실제로 활용가능한 모델구축 연구와 사례보고는 활발히 진행되고 있지 않은 실정이다. KT와 과학기술정보통신부는 2014년부터 국가 R&D사업의 일환으로 축산관련 차량의 이동경로를 분석하여 예측하는 빅데이터 사업을 수행하고 있다. 동물감염병 예방을 위하여 연구진은 최초에는 차량이동 데이터를 활용한 회귀분석모델을 기반으로 한 예측모델을 개발하였다. 이후에는 기계학습을 활용하여 좀 더 정확한 예측 모델을 구성하였다. 특히, 2017년 예측모델에서는 시설물에 대한 확산 위험도를 추가하였고 모델링의 하이퍼 파라미터를 다양하게 고려하여 모델의 성능을 높였다. 정오분류표와 ROC 커브를 확인한 결과, 기계 학습 모델보다 2017년 구성된 모형이 우수함을 확인 할 수 있었다. 또한 2017에는 결과에 대한 설명을 추가하여 방역당국의 의사결정을 돕고 이해관계자를 설득할 수 있는 근거를 확보하였다. 본 연구는 빅데이터를 활용하여 동물감염병예방시스템을 구축한 사례연구로 모델주요변수값, 이에따른 실제예측성능결과, 그리고 상세하게 기술된 시스템구축 프로세스는 향후 감염병예방 영역의 지속적인 빅데이터활용 및 분석 모델 개발에 기여할 수 있을 것이다. 또한 본 연구에서 구축한 시스템을 통해 보다 사전적이고 효과적인 방역을 할 수 있을 것으로 기대한다.

사용자 로그 분석에 기반한 노인 돌봄 솔루션 구축 전략: 효돌 제품의 사례를 중심으로 (Implementation Strategy for the Elderly Care Solution Based on Usage Log Analysis: Focusing on the Case of Hyodol Product)

  • 이준식;유인진;박도형
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.117-140
    • /
    • 2019
  • 고령화 현상이 가속화되고, 취약계층 노인과 관련된 다양한 사회문제가 제기됨에 따라 노인세대의 건강과 안전을 보호하기 위한 효과적인 노인 돌봄 솔루션의 필요성이 커지고 있다. 최근에는 노인 돌봄의 수단으로 첨단화된 ICT 기술을 탑재한 스마트 토이를 활용하고자 하는 사례가 늘고 있다. 특히 스마트 토이를 통해 기록되는 노인 행태에 대한 로그 데이터는 노인 돌봄 관련 정책 수립, 노인 돌봄 서비스 컨셉 기획 및 개발과 같은 분야에 정량적이고 객관적인 설명지표로써 활용 가치가 높을 것으로 전망된다. 그러나 현재까지 노인 돌봄 스마트 토이와 관련된 연구 중 스마트 토이를 통해 기록된 사용자 행동 로그에 주목하여 이를 의사결정에 활용하고자 하는 연구는 부족한 실정이다. 본 연구는 기존에 충분히 논의되지 않았던 스마트 토이 사용자 행동 로그 데이터에 대한 분석을 중심으로, 노인 돌봄 솔루션의 사용자 경험 증진을 위한 효과적인 인사이트를 도출하는 것을 목적으로 한다. 구체적으로 사용자 프로파일링 기반 행태 분석과 사용 행태에 따른 삶의 질 변화 메커니즘 도출을 단계적으로 수행하였다. 분석 결과, 5개의 노인 생활관리 요인으로부터 노인집단 유형을 분류할 수 있는 2개의 중요한 차원을 도출하였으며, 도출한 차원에 근거하여 전체 노인 사용자를 3개의 유형으로 분류하고 유형별 스마트 토이 사용 행태 차이를 프로파일링 분석을 통해 확인할 수 있었다. 이후 스마트 토이 사용 행태에 따른 삶의 질 변화 메커니즘을 도출하기 위한 단계적 회귀분석을 수행하였으며, 스마트 토이와의 상호작용, 스마트 토이의 콘텐츠 사용, 스마트 토이가 관찰한 노인의 가정 내 활동 정도가 노인의 우울감 개선과 생활패턴 개선에 미치는 영향 및 이를 중재하는 경로로써 스마트 토이에 대한 사용자의 성능평가와 만족감의 역할을 밝혀내었다.

ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구 (A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder)

  • 신병진;이종훈;한상진;박충식
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.57-73
    • /
    • 2021
  • ICT 인프라의 이상탐지를 통한 유지보수와 장애 예방이 중요해지고 있다. 장애 예방을 위해서 이상탐지에 대한 관심이 높아지고 있으며, 지금까지의 다양한 이상탐지 기법 중 최근 연구들에서는 딥러닝을 활용하고 있으며 오토인코더를 활용한 모델을 제안하고 있다. 이는 오토인코더가 다차원 다변량에 대해서도 효과적으로 처리가 가능하다는 것이다. 한편 학습 시에는 많은 컴퓨터 자원이 소모되지만 추론과정에서는 연산을 빠르게 수행할 수 있어 실시간 스트리밍 서비스가 가능하다. 본 연구에서는 기존 연구들과 달리 오토인코더에 2가지 요소를 가미하여 이상탐지의 성능을 높이고자 하였다. 먼저 다차원 데이터가 가지고 있는 속성별 특징을 최대한 부각하여 활용하기 위해 멀티모달 개념을 적용한 멀티모달 오토인코더를 적용하였다. CPU, Memory, network 등 서로 연관이 있는 지표들을 묶어 5개의 모달로 구성하여 학습 성능을 높이고자 하였다. 또한, 시계열 데이터의 특징을 데이터의 차원을 늘리지 않고 효과적으로 학습하기 위하여 조건부 오토인코더(conditional autoencoder) 구조를 활용하는 조건부 멀티모달 오토인코더(Conditional Multimodal Autoencoder, CMAE)를 제안하였다. 제안한 CAME 모델은 비교 실험을 통해 검증했으며, 기존 연구들에서 많이 활용된 오토인코더와 비교하여 AUC, Accuracy, Precision, Recall, F1-score의 성능 평가를 진행한 결과 유니모달 오토인코더(UAE)와 멀티모달 오토인코더(Multimodal Autoencoder, MAE)의 성능을 상회하는 결과를 얻어 이상탐지에 있어 효과적이라는 것을 확인하였다.

빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로 (An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework)

  • 가회광;김진수
    • Asia pacific journal of information systems
    • /
    • 제24권4호
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

온라인 커뮤니티 특성과 충성도 간의 관계에 대한 연구: 자아일치성, 소비자 체험, 상호작용성의 매개적 역할을 중심으로 (A Study on the Relationship Between Online Community Characteristics and Loyalty : Focused on Mediating Roles of Self-Congruency, Consumer Experience, and Consumer to Consumer Interactivity)

  • 김문태;옥정원
    • 마케팅과학연구
    • /
    • 제18권4호
    • /
    • pp.157-194
    • /
    • 2008
  • 온라인 커뮤니티에 대한 연구는 학자들과 실무자들의 많은 관심을 받아온 분야이다. 과거 많은 연구자들이 온라인 커뮤니티를 통해 큰 상업적 성과를 거둘 수 있다고 했지만 현실은 그렇지 못하며, 마케팅 연구 분야에서도 상업적 성공을 이끄는 변수들에 대한 연구가 많이 이루어지지 못한 것이 사실이다. 이러한 점에서 본 연구는 온라인 커뮤니티 사이트들이 콘텐츠 관련 마케팅 노력을 통해 소비자들의 자아일치성을 높이고, 긍정적 체험을 유도하면서 커뮤니티 사이트 내에서 소비자 간 상호작용성 등을 높여 결국, 커뮤니티 사이트의 방문충성도 및 구매충성도를 실현시킬 수 있는 프레임 웍을 제시하였다. 연구결과 온라인 커뮤니티 사이트에서 소비자 간 상호작용성이 방문충성도 그리고 특히 구매충성도의 구축에 매우 중요한 요인으로 밝혀졌고, 온라인 커뮤니티 사이트에 대한 자아일치성 지각 및 긍정적인 소비자 체험 또한 소비자의 상호작용성, 방문충성도 그리고 커뮤니티에 대한 애정에 상당히 중요한 요인임을 알 수 있었다. 또한 이러한 매개변수에 주된 영향요소로서 콘텐츠 우수성, 사이트 생동감, 네비게이션용이성, 고객화 등의 콘텐츠 관련 마케팅 노력의 역할의 중요성을 강조하였다.

  • PDF