• Title/Summary/Keyword: Active suspension control

Search Result 283, Processing Time 0.021 seconds

Performance Evaluation of Control Algorithms for 1/2 Tracked Vehicle with Semi-Active Suspension System (1/2 궤도차량에 대한 반능동 현수장치 제어 알고리즘들의 성능평가)

  • 윤일중;임재필;신휘범;이진규;신민재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.139-147
    • /
    • 2001
  • 2 DOF half-car model with 6 semi-active suspension units is utilized to evaluate the tracked vehicle dynamic performance simulated by several suspension control algorithms. The target of this research is to improve the ride comfort to maintain operator's handling capability when the tracked vehicle travels fast on the rough road. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-active, and on-off systems, are evaluated and analyzed in view point of ride comfort. The dynamic performances of vehicle are expressed and evaluated by vibratory characteristic evaluation curves, performance indices and frequency characteristic curves. The simulation results show that the performances of sky-hook algorithms for ride comfort nearly follow those of full state feedback algorithms and on-off algorithm is recommendatory when the vehicle runs relatively fast.

  • PDF

Dynamic Behaviour Analysis of a Hydraulic Control System for Vehicle Active Suspension (차량 능동현가장치용 유압 제어시스템의 동적거동 해석)

  • Jung, Y.G.;Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • Active suspension systems have been using for improving ride quality and stability for vehicles. An active suspension system is composed of a hydraulic pump, pressure control valves, hydraulic dampers, vehicle body, tires and other components. In this study, the mathematical model for the active suspension system based on the quarter car concept is derived, and a program for analysing the dynamic behaviour of the suspension system is developed. The computed results by the developed program are compared with the experimental results for confirming the reliability and usefulness of the developed program.

  • PDF

Active Suspension using Disturbance Accommodating Sliding Mode Control (능동 현가 장치의 외란 적응 슬라이딩 모드 제어)

  • 김종래;김진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

Self-tuning optimal control of an active suspension using a neural network

  • Lee, Byung-Yun;Kim, Wan-Il;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.295-298
    • /
    • 1996
  • In this paper, a self-tuning optimal control algorithm is proposed to retain the optimal performance of an active suspension system, when the vehicle has some time varying parameters and parameter uncertainties. We consider a 2 DOF time-varying quarter car model which has the parameter variation of sprung mass, suspension spring constant and suspension damping constant. Instead of solving algebraic riccati equation on line, we propose a neural network approach as an alternative. The optimal feedback gains obtained from the off line computation, according to parameter variations, are used as the neural network training data. When the active suspension system is on, the parameters are identified by the recursive least square method and the trained neural network controller designer finds the proper optimal feedback gains. The simulation results are represented and discussed.

  • PDF

CONTROL STRATEGY OF AN ACTIVE SUSPENSION FOR A HALF CAR MODEL WITH PREVIEW INFORMATION

  • CHO B.-K.;RYU G.;SONG S. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.243-249
    • /
    • 2005
  • To improve the ride comfort and handling characteristics of a vehicle, an active suspension which is controlled by external actuators can be used. An active suspension can control the vertical acceleration of a vehicle and the tire deflection to achieve the desired suspension goal. For this purpose, Model Predictive Control (MPC) scheme is applied with the assumption that the preview information of the oncoming road disturbance is available. The predictive control approach uses the output prediction to forecast the output over a time horizon and determines the future control over the horizon by minimizing the performance index. The developed method is applied to a half car model of four degrees-of-freedom and numerical simulations show that the MPC controller improves noticeably the ride qualities and handling performance of a vehicle.

ANFIS Intelligence Control of a Semi-Active Suspension System (반능동 현가장치의 ANFIS 지능제어)

  • 이육형;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.144-147
    • /
    • 2000
  • In this paper, ANFIS intelligence control of a semi-active suspension system is investigated. The strength of the ER damper is controlled by a high voltage power supply. This paper deals with a two-degree-of-freedom suspension using the damper with ERF for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFlS control method. Computer simulation results show that the semi-active suspension with ERF damper has good performances of ride quality

  • PDF

Design of A Controller for Vehicle Active Suspensions Considering Driving Conditions (주행 상황을 고려한 차량 능동 현가장치 제어기 설계)

  • Cheon Jong-Min;Lee Jong-Moo;Kwon Soonman;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.698-704
    • /
    • 2005
  • Passive suspensions with fixed design constants are very restrictive in the inherent suspension problem, the trade-off between the ride quality and the suspension travel. Active suspensions are used to solve some drawbacks of passive suspensions. In this paper, we propose a controller design for vehicle active suspensions considering variable driving conditions. Our controller estimates the current driving conditions by detecting the road frequencies gotten from Fourier Transform and decides which factor must be emphasized between the ride quality and the suspension travel. In one case of focusing on the ride quality, we use the skyhook control law and in the other case of focusing on the suspension travel, the double skyhook control law is used. The control law modified by various road situations outputs the reference force value the electro-hydraulic actuator in active suspension system must generate. To track the reference force, we adopt the sliding control law which is very useful in controlling the nonlinear system like the electro-hydraulic actuator.

Semi-active and Active Vibration Control to Improve Ride Comfort in Railway Vehicle (철도차량 승차감 향상을 위한 반능동/능동 진동제어)

  • You, Wonhee;Shin, Yujeong;Hur, Hyunmoo;Park, Junhyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.248-253
    • /
    • 2013
  • The maximum speed is one of the most important performance in high speed railway vehicle. The higher the train speed is, the worse the ride comfort is, In order to solve this problem, a semi-active or active suspension can be applied to high speed railway vehicle. The variable damper with hydraulic solenoid valve is used in the semi-active suspension. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. The MR(Magneto Rheological) damper can be considered instead of hydraulic variable damper which needs additional device, i.e. reserver tank for fluid. In the case of active suspension, hydraulic actuator or electro-mechanical one is used to suppress the carbody vibration in railway vehicle. In this study the MR damper and electro-mechanical actuator was considered in secondary suspension system of high speed railway vehicle. The dynamic analysis was performed by using 10-DOF dynamic equations of railway vehicle. The performance of the semi-active suspension and active suspension system were reviewed by using MATLAB/Simulink S/W. The vibration suppression effect of semi-active and active suspension system were investigated experimentally by using 1/5-scaled railway vehicle model.

  • PDF

Damping performance Analysis for an Electronically Contralled Shock Absorber (연속 가변형 충격흡수기의 감쇠성능 해석)

  • 박재우;이동락;백운경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.192-201
    • /
    • 2001
  • Analyzing internal structure, flow rate and dynamic behavior characteristics of electronically controlled shock absorber, damping performance limit is identified to comprise the two reciprocal characteristics of ride comfort and handling safety. Regardless of its lower performance than the active suspension control system, the semi-active suspension control system has been taking interest because of its absolutely higher performance than passive suspension system. Since the pervious studies have been concentrated mostly on analytic aspect and survey on the internal structure of the shock absorber remain insufficient, the main discourse of this paper is focused on analyzing the nonlinear shock absorber which varies the damping force of semi-active suspension system and the dynamic characteristics of the solenoid valve, a sort of pressure valve, and proposing the design factors of importance.

  • PDF

LQC Control for Semi-Active Suspension Systems with Road-Adaptation (노면추정을 통한 반능동 현가시스템의 LQG 제어)

  • 손현철;홍경태;홍금식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.669-678
    • /
    • 2003
  • A road-adaptive LQG control for the semi-active Macpherson strut suspension system of hydraulic type is investigated. A new control-oriented model, which incorporates the rotational motion of the unsprung mass, is used for control system design. First, based on the extended least squares estimation algorithm, a LQG controller adapting to the estimated road characteristics is designed. With computer simulations, the performance of the proposed LQC-controlled semi-active suspension is compared with that of a non-adaptive one. The results show better control performance of the proposed system over the compared one.