• Title/Summary/Keyword: Active sampling

Search Result 298, Processing Time 0.022 seconds

Deadbeat Control with a Repetitive Predictor for Three-Level Active Power Filters

  • He, Yingjie;Liu, Jinjun;Tang, Jian;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.583-590
    • /
    • 2011
  • Three-level NPC inverters have been put into practical use for years especially in high voltage high power grids. This paper researches three-level active power filters (APFs). In this paper a mathematical model in the d-q coordinates is presented for 3-phase 3-wire NPC APFs. The deadbeat control scheme is obtained by using state equations. Canceling the delay of one sampling period and providing the predictive value of the harmonic current is a key problem of the deadbeat control. Based on this deadbeat control, the predictive output current value is obtained by the state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by the repetitive predictor synchronously. The repetitive predictor can achieve a better prediction of the harmonic current with the same sampling frequency, thus improving the overall performance of the system. The experiment results indicate that the steady-state accuracy and the dynamic response are both satisfying when the proposed control scheme is implemented.

Smoke Density and Operation of Fire Detector Influenced by Air Stream (기류순환이 연기농도와 감지기 작동에 미치는 영향)

  • 이복영;이병곤
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.28-32
    • /
    • 2002
  • The performance based design in fire detection system, the effect of high airflow and dilution of smoke produced in any fire situation serve to increase the response time of point-type smoke detectors. This study investigated the smoke density of ceiling, under the air stream and in normal status when fire type is smoldering fires. The result of study, smoke generated in the fire was swept away from nearby spot type smoke detector which failed to actuate because dispersed in diluted form around the room. The concept of performance based design in fire detection system of protected area influenced by high airflow provided the need of active fire detection system such as air sampling smoke detection system.

Robust Deadbeat Current Control Method for Three-Phase Voltage-Source Active Power Filter

  • Nishida, Katsumi;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.102-111
    • /
    • 2004
  • This paper is concerned with a deadbeat current control implementation of shunt-type three-phase active power filter (APF). Although the one-dimensional deadbeat control method can attain time-optimal response of APF compensating current, one sampling period is actually required fur its settling time. This delay is a serious drawback for this control technique. To cancel such a delay and one more delay caused by DSP execution time, the desired APF compensating current has to be predicted two sampling periods ahead. Therefore an adaptive predictor is adopted for the purpose of both predicting the control error of two sampling periods ahead and bringing the robustness to the deadbeat current control system. By adding the adaptive predictor output as an adjustment term to the reference value of half a source voltage period before, settling time is made short in a transient state. On the other hand, in a steady state, THD (total harmonic distortion) of the utility grid side AC source current can be reduced as much as possible, compared to the case that ideal identification of controlled system could be made.

Concrete structural health monitoring using piezoceramic-based wireless sensor networks

  • Li, Peng;Gu, Haichang;Song, Gangbing;Zheng, Rong;Mo, Y.L.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.731-748
    • /
    • 2010
  • Impact detection and health monitoring are very important tasks for civil infrastructures, such as bridges. Piezoceramic based transducers are widely researched for these tasks due to the piezoceramic material's inherent advantages of dual sensing and actuation ability, which enables the active sensing method for structural health monitoring with a network of piezoceramic transducers. Wireless sensor networks, which are easy for deployment, have great potential in health monitoring systems for large civil infrastructures to identify early-age damages. However, most commercial wireless sensor networks are general purpose and may not be optimized for a network of piezoceramic based transducers. Wireless networks of piezoceramic transducers for active sensing have special requirements, such as relatively high sampling rate (at a few-thousand Hz), incorporation of an amplifier for the piezoceramic element for actuation, and low energy consumption for actuation. In this paper, a wireless network is specially designed for piezoceramic transducers to implement impact detection and active sensing for structural health monitoring. A power efficient embedded system is designed to form the wireless sensor network that is capable of high sampling rate. A 32 bit RISC wireless microcontroller is chosen as the main processor. Detailed design of the hardware system and software system of the wireless sensor network is presented in this paper. To verify the functionality of the wireless sensor network, it is deployed on a two-story concrete frame with embedded piezoceramic transducers, and the active sensing property of piezoceramic material is used to detect the damage in the structure. Experimental results show that the wireless sensor network can effectively implement active sensing and impact detection with high sampling rate while maintaining low power consumption by performing offline data processing and minimizing wireless communication.

Day-Night Differences in Zooplankton Catches in the Coastal Area of Active Tidal Mixing (조류에 의한 혼합이 활발한 연안역에서의 동물 플랑크톤 채집량의 주야 차이)

  • PARK, CHUL
    • 한국해양학회지
    • /
    • v.25 no.3
    • /
    • pp.151-159
    • /
    • 1990
  • For the test of zooplankton's ability to migrate vertically in the coastal area of active tidal mixing, day-night differences in zooplankton catches were examined. Some taxa such as large Copepods, My side, chaetognatha and Bivalve larva showed high abundances at surface layer at night suggesting the presence of vertical migration even in this shallow coastal area of active tidal mixing. Previously used methods of sampling were reviewed to find a proper sampling method in the Korean western coastal area.

  • PDF

MPC-based Active Steering Control using Multi-rate Kalman Filter for Autonomous Vehicle Systems with Vision (비젼 기반 자율주행을 위한 다중비율 예측기 설계와 모델예측 기반 능동조향 제어)

  • Kim, Bo-Ah;Lee, Young-Ok;Lee, Seung-Hi;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.735-743
    • /
    • 2012
  • In this paper, we present model predictive control (MPC) applied to lane keeping system (LKS) based on a vision module. Due to a slow sampling rate of the vision system, the conventional LKS using single rate control may result in uncomfortable steering control rate in a high vehicle speed. By applying MPC using multi-rate Kalman filter to active steering control, the proposed MPC-based active steering control system prevents undesirable saturated steering control command. The effectiveness of the MPC is validated by simulations for the LKS equipped with a camera module having a slow sampling rate on the curved lane with the minimum radius of 250[m] at a vehicle speed of 30[m/s].

Frequency Dependent Damping for a Nonlinear Vehicle Active Suspension System (비선형 차량능동현가시스템의 주파수 감응감쇠 특성연구)

  • Kim, J.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.45-54
    • /
    • 2011
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. Among the various suspension systems, an active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. In the process of the linearization for the nonlinear active suspension system, the frequency dependent damping method is used for the exact modelling to the real model. The pressure control valve which is controlled by proportional solenoid is the most important component in the active suspension system. The pressure control valve has the dynamic characteristics with 1st order delay. Therefore, It's necessary to adopt the lead compensator to compensate the dynamics of the pressure control valve. The sampling time is also important factor for the control performances. The sampling time value is proposed to satisfy the system performances. After the modelling and simulation for the pressure control valve and vehicle dynamic, the performances of the vehicle ride quality and the stability are enhanced.

A Study on the Improvement of Active Noise Control using Synchronous Sampling Method (Synchronous sampling method를 이용한 능동소음제어 성능 향상에 관한 연구)

  • Oh, Jae-Eung;Jo, Sung-O;Kim, Heung-Seob;Shin, Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.125-130
    • /
    • 1993
  • 본 연구에서는 소음의 주기성분에 해당하는 전기적 참조신호인 주기적 펄스 신호(pulse train)를 사용하는 실시간 제어용 어셈블리 프로그램을 작성하고, Synchronous Sampling Method를 사용하여 능동소음제어를 실시, 이것에 대 한 장단점 및 한계를 고찰하는데 있다.

  • PDF

An application and development of an activity lesson guessing a population ratio by sampling with replacement in 'Closed box' ('닫힌 상자'에서의 복원추출에 의한 모비율 추측 활동수업 개발 및 적용)

  • Lee, Gi Don
    • The Mathematical Education
    • /
    • v.57 no.4
    • /
    • pp.413-431
    • /
    • 2018
  • In this study, I developed an activity oriented lesson to support the understanding of probabilistic and quantitative estimating population ratios according to the standard statistical principles and discussed its implications in didactical respects. The developed activity lesson, as an efficient physical simulation activity by sampling with replacement, simulates unknown populations and real problem situations through completely closed 'Closed Box' in which we can not see nor take out the inside balls, and provides teaching and learning devices which highlight the representativeness of sample ratios and the sampling variability. I applied this activity lesson to the gifted students who did not learn estimating population ratios and collected the research data such as the activity sheets and recording and transcribing data of students' presenting, and analyzed them by Qualitative Content Analysis. As a result of an application, this activity lesson was effective in recognizing and reflecting on the representativeness of sample ratios and recognizing the random sampling variability. On the other hand, in order to show the sampling variability clearer, I discussed appropriately increasing the total number of the inside balls put in 'Closed Box' and the active involvement of the teachers to make students pay attention to controlling possible selection bias in sampling processes.

A new structural reliability analysis method based on PC-Kriging and adaptive sampling region

  • Yu, Zhenliang;Sun, Zhili;Guo, Fanyi;Cao, Runan;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.271-282
    • /
    • 2022
  • The active learning surrogate model based on adaptive sampling strategy is increasingly popular in reliability analysis. However, most of the existing sampling strategies adopt the trial and error method to determine the size of the Monte Carlo (MC) candidate sample pool which satisfies the requirement of variation coefficient of failure probability. It will lead to a reduction in the calculation efficiency of reliability analysis. To avoid this defect, a new method for determining the optimal size of the MC candidate sample pool is proposed, and a new structural reliability analysis method combining polynomial chaos-based Kriging model (PC-Kriging) with adaptive sampling region is also proposed (PCK-ASR). Firstly, based on the lower limit of the confidence interval, a new method for estimating the optimal size of the MC candidate sample pool is proposed. Secondly, based on the upper limit of the confidence interval, an adaptive sampling region strategy similar to the radial centralized sampling method is developed. Then, the k-means++ clustering technique and the learning function LIF are used to complete the adaptive design of experiments (DoE). Finally, the effectiveness and accuracy of the PCK-ASR method are verified by three numerical examples and one practical engineering example.