• Title/Summary/Keyword: Active flux

Search Result 298, Processing Time 0.027 seconds

양자점을 이용한 808 nm 파장대역의 고출력 레이저 칩 개발

  • O, Hyeon-Ji;Park, Seong-Jun;Kim, Min-Tae;Kim, Ho-Seong;Song, Jin-Dong;Choe, Won-Jun;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.87.2-87.2
    • /
    • 2012
  • 고출력 반도체 레이저 다이오드는 발진 파장 및 광 출력에 따라 다양한 분야에 응용되고 있으며, 특히 발진파장이 808 nm 및 1470 nm 인 고출력 레이저 다이오드의 경우 재료가공, 펌핑용 광원 (DPSSL, 광섬유 레이저), 의료, 피부미용 (점 제거), 레이저 다이오드 디스플레이 등 가장 다양한 응용분야를 가진 광원 중의 하나라고 할 수 있다. 일례로 재료가공의 경우, 레이저 용접, 레이저 인쇄, 하드디스크의 레이저 텍스쳐링 등 그 응용분야는 무수히 많으며, 최근에는 미래 성장동력 사업의 하나로 중요한 이슈가 되는 태양전지에서 에지 분리 (edge isolation), ID 마킹, 레이저 솔더링 등에서 필수불가결한 광원으로 각광받고 있다. 808 nm 대역 In(Ga)AlAs quantum dots laser diode (QDLD) 성장을 위하여 In(Ga)AlAs QD active 와 In(Ga)AlAs QD LD 성장으로 크게 분류하여 여러 가지 test 실험을 수행하였다. 우선 In(Ga)AlAs QD LD 성장에 앞서 high power LD에 적용 가능한 GaAs/AlGaAs quantum well의 성장 및 전기 측정을 수행하여 그 가능성을 보았다. In(Ga)AlAs QD active layer의 효과적인 실험 조건 조절을 위해 QD layer는 sequential mithod (ex. n x (InGaAlAs t sec + InAs t sec + As 10 sec)를 사용하였다. In(Ga)AlAs QD active layer는 성장 온도, 각 sequence 별 시간, 각 source 양, barrier 두께 조절 및 타입변형, Arsenic flux 등의 조건을 조절하여 실험하였다. 또한 위에서 선택된 몇 가지 active layer 를 이용하여 In(Ga)AlAs QD LD 성장 조건 변화를 시도하였다.

  • PDF

WHAT MAKES A RADIO-AGN TICK? TRIGGERING AND FEEDING OF ACTIVE GALAXIES WITH STRONG RADIO JETS

  • KAROUZOS, MARIOS;IM, MYUNGSHIN;KIM, JAE-WOO;LEE, SEONG-KOOK;CHAPMAN, SCOTT
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.447-449
    • /
    • 2015
  • Although the link between activity in the nuclei of galaxy and galactic mergers has been under scrutiny for several years, it is still unclear to what extent and for which populations of active galaxies merger-triggered activity is relevant. The environments of AGN allow an indirect probe of the past merger history and future merger probability of these systems, suffering less from sensitivity issues when extended to higher redshifts than traditional morphological studies of AGN host galaxies. Here we present results from our investigation of the environment of radio selected sources out to a redshift z=2. We employ the first data release J-band catalog of the new near-IR Infrared Medium-Deep Survey (IMS), 1.4 GHz radio data from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey and a deep dedicated VLA survey of the VIMOS field, covering a combined total of 20 sq. degrees. At a flux limit of the combined radio catalog of 0.1 mJy, we probe over 8 orders of magnitude of radio luminosity. Using the second closest neighbor density parameters, we test whether active galaxies inhabit denser environments. We find evidence for a sub-population of radio-selected AGN that reside in significantly overdense environments at small scales, although we do not find significant overdensities for the bulk of our sample. We show that radio-AGN in the most underdense environments have vigorous ongoing star formation. We interpret these results in terms of the triggering and fuelling mechanism of radio-AGN.

Photochemical Response Analysis on Drought Stress for Red Pepper (Capsiumannuum L.)

  • Yoo, Sung-Yung;Lee, Yong-Ho;Park, So-Hyun;Choi, Kyong-Mi;Park, June-Young;Kim, A-Ram;Hwang, Su-Min;Lee, Min-Ju;Ko, Tae-Seok;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.659-664
    • /
    • 2013
  • The aim of this study is to determine the drought stress index through photochemical analysis in red pepper (Capsiumannuum L.). The photochemical interpretation was performed in the basis of the relation between Kautsky effect and Photosystem II (PSII) following the measurement of chlorophyll, pheophytin contents, and $CO_2$ assimilation in drought stressed 5-week-old red pepper plants. The $CO_2$ assimilation rate was severely lowered with almost 77% reduction of chlorophyll and pheophytin contents at four days after non-irrigation. It was clearly observed that the chlorophyll fluorescence intensity rose from a minimum level (the O level), in less than one second, to a maximum level (the P-level) via two intermediate steps labeled J and I (OJIP process). Drought factor index (DFI) was also calculated using measured OJIP parameters. The DFI was -0.22, meaning not only the initial inhibition of PSII but also sequential inhibition of PSI. In real, most of all photochemical parameters such as quantum yield of the electron transport flux from Quinone A ($Q_A$) to Quinone B ($Q_B$), quantum yield of the electron transport flux until the PSI electron acceptors, quantum yield of the electron transport flux until the PSI electron acceptors, average absorbed photon flux per PSII reaction center, and electron transport flux until PSI acceptors per cross section were profoundly reduced except number of QA reducing reaction centers (RCs) per PSII antenna chlorophyll (RC/ABS). It was illuminated that at least 6 parameters related with quantum yield/efficiency and specific energy fluxes (per active PSII RC) could be applied to be used as the drought stress index. Furthermore, in the combination of parameters, driving forces (DF) for photochemical activity could be deduced from the performance index (PI) for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors. In conclusion, photochemical responses and their related parameters can be used as physiological DFI.

Constraints on dark radiation from cosmological probes

  • Rossi, Graziano;Yeche, Christophe;Palanque-Delabrouille, Nathalie;Lesgourgues, Julien
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2015
  • We present joint constraints on the number of effective neutrino species $N_{eff}$ and the sum of neutrino masses ${\Sigma}m_{\nu}$, based on a technique which exploits the full information contained in the one-dimensional Lyman-${\alpha}$ forest flux power spectrum, complemented by additional cosmological probes. In particular, we obtain $N_{eff}=2.91{\pm}0.22$ (95% CL) and ${\Sigma}m_{\nu}$ < 0.15 eV (95% CL) when we combine BOSS Lyman-${\alpha}$ forest data with CMB (Planck+ACT+SPT+WMAP polarization) measurements, and $N_{eff}=2.88{\pm}0.20$ (95% CL) and ${Sigma}m_{\nu}$ < 0.14 eV (95% CL) when we further add baryon acoustic oscillations. Our results tend to favor the normal hierarchy scenario for the masses of the active neutrino species, provide strong evidence for the Cosmic Neutrino Background from $N_{eff}{\approx}3$($N_{eff}=0$ is rejected at more than $14{\sigma}$), and rule out the possibility of a sterile neutrino thermalized with active neutrinos (i.e., $N_{eff}=4$) - or more generally any decoupled relativistic relic with $${\Delta}N_{eff}{\sim_=}1$$ - at a significance of over $5{\sigma}$, the strongest bound to date, implying that there is no need for exotic neutrino physics in the concordance ${\Lambda}CDM$ model.

  • PDF

A MULTI-WAVELENGTH STUDY OF PAH-SELECTED STARBURST GALAXIES

  • Takagi, T.;Matsuhara, H.;Wada, T.;Ohyama, Y.;Oyabu, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.321-324
    • /
    • 2012
  • Using extensive mid-IR datasets from AKARI, i.e. 9-band photometry covering the wavelength range from $2{\mu}m$ to $24{\mu}m$ and the unbiased spectroscopic survey for sources with $S_{\nu}$($9{\mu}m$)>0.3 mJy, we study starburst galaxies specifically at the redshift of z ~ 0.5, whose mid-IR spectra are clearly dominated by the PAH emission features. PAH-selected galaxies, selected with extremely red mid-IR colour due to PAHs, have high rest-frame PAH-to-stellar luminosity ratios, comparable to those in the most active regions in nearby starburst galaxies. Thus, they seem to have active starburst regions spreading over the whole body. Furthermore, some of PAH-selected galaxies are found to have peculiar rest-frame 11-to-$8{\mu}m$ flux ratios, which is systematically smaller than nearby starburst/AGN spectral templates. This may indicate a systematic difference in the physical condition of ISM between nearby and distant starburst galaxies.

Magnetic Circuit Design Methodology of MR CDC Dampers for Semi-Active Suspensions (반능동 서스펜션용 MR CDC 댐퍼의 자기회로 설계기법)

  • Park, Jae-Woo;Jung, Young-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.48-57
    • /
    • 2008
  • MR Fluid, one of functional fluids, is developed for the application to automobile products. MR CDC damper using MR fluid has following principles. When ar electric current is applied to the solenoid, apparent viscosity of MR fluid passing through the annular gap which acts as magnetic circuits varies directly as the intensity of the current. These devices have a simple structure and excellent lime response characteristics, emerging as the alternatives of the conventional semi-active suspension systems. In this study, a design procedure of the magnetic circuit through the solenoid fore and the flux ring functioning as a magnetic path is investigated so as to optimize the design and performance of MR CDC dampers for the vehicles. In addition, an operating point on the B-H curve, the magnetization according to the variation in the annular gap, the pole piece width and the density of MR fluid are studied to design the optimal piston head within the restrained dimension range.

Torque Ripple Reduction of Interior Permanent-Magnet Synchronous Motors Driven by Torque Predictive Control (토크예측제어를 이용한 매입형 영구자석 동기전동기의 토크리플저감기법)

  • Kim, Hyunseob;Han, Jungho;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.102-109
    • /
    • 2013
  • In this paper, a new torque predictive control method of interior permanent magnet synchronous motor is developed based on an extended rotor flux. Also, a duty ratio prediction method is proposed and allows the duty ratio of the active stator voltage vector to be continuously calculated. The proposed method makes it possible to relatively reduce the torque ripple under the steady state as well as to remain the good dynamic response in the transient state. With the duty ratio prediction method, the magnitude and time interval of the active stator voltage vector applied can be continuously controlled against the varying operation conditions. This paper shows a comparative study among the switching table direct torque control(DTC), the SVM-DTC, conventional torque predictive control, and the proposed torque predictive control. Simulation results show validity and effectiveness of this work.

Model Predictive Power Control of a PWM Rectifier for Electromagnetic Transmitters

  • Zhang, Jialin;Zhang, Yiming;Guo, Bing;Gao, Junxia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.789-801
    • /
    • 2018
  • Model predictive direct power control (MPDPC) is a widely recognized high-performance control strategy for a three-phase grid-connected pulse width modulation (PWM) rectifier. Unlike those of conventional grid-connected PWM rectifiers, the active and reactive powers of permanent magnet synchronous generator (PMSG)-connected PWM rectifiers, which are used in electromagnetic transmitters, cannot be calculated as the product of voltage and current because the back electromotive force (EMF) of the generator cannot be measured directly. In this study, the predictive power model of the rectifier is obtained by analyzing the relationship among flux, back EMF, active/reactive power, converter voltage, and stator current of the generator. The concept of duty cycle control in the proposed MPDPC is introduced by allocating a fraction of the control period for a nonzero vector and rest time for a zero vector. When nonzero vectors and their duration in the predefined cost function are simultaneously evaluated, the global power ripple minimization is obtained. Simulation and experimental results prove that the proposed MPDPC strategy with duty cycle control for the PMSG-connected PWM rectifier can achieve better control performance than the conventional MPDPC-SVM with grid-connected PWM rectifier.

Study of Characteristics of Corona Discharge Plasma in a Wire-Cylinder Type Reactor (Wire-Cylinder형 반응로에서의 코로나 방전 플라스마의 특성 연구)

  • 박승자;박인호;고욱희
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.132-138
    • /
    • 2004
  • We used the self-consistent one-dimensional model applied to FCT algorithm and FEM method in a wire-cylinder type reactor to study the characteristics of corona discharge plasma in air at the atmospheric pressure. At the pulsed do voltage and do voltage, we studied the changes of the characteristic of plasma by computing electron density profile according to the changes of voltage and the size of reactor. The changes of active radius from this result are compared with the data of Peek's. The numerical simulation results for a corona discharge plasma explain the physical mechanism of the discharge process and could be used to obtain the optimized parameters for designing the plasma reactor for pollution abatement.

A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application (건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.