• Title/Summary/Keyword: Active Routing

Search Result 112, Processing Time 0.017 seconds

Design and Implementation of Anomaly Traffic Control framework based on Linux Netfilter System and CBQ Routing Mechanisms (리눅스 Netfilter시스템과 CBQ 라우팅 기능을 이용한 비정상 트래픽 제어 프레임워크 설계 및 구현)

  • 조은경;고광선;이태근;강용혁;엄영익
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.6
    • /
    • pp.129-140
    • /
    • 2003
  • Recently viruses and various hacking tools that threat hosts on a network becomes more intelligent and cleverer, and so the various security mechanisms against them have ken developed during last decades. To detect these network attacks, many NIPSs(Network-based Intrusion Prevention Systems) that are more functional than traditional NIDSs are developed by several companies and organizations. But, many previous NIPSS are hewn to have some weakness in protecting important hosts from network attacks because of its incorrectness and post-management aspects. The aspect of incorrectness means that many NIPSs incorrectly discriminate between normal and attack network traffic in real time. The aspect of post-management means that they generally respond to attacks after the intrusions are already performed to a large extent. Therefore, to detect network attacks in realtime and to increase the capability of analyzing packets, faster and more active responding capabilities are required for NIPS frameworks. In this paper, we propose a framework for real-time intrusion prevention. This framework consists of packet filtering component that works on netfilter in Linux kernel and traffic control component that have a capability of step-by-step control over abnormal network traffic with the CBQ mechanism.

Hydrologically Route-based Green Infra facilities assessment Model: Focus on Bio-retention cells, Infiltration trenches, Porous Pavement System, and Vegetative Swales (수문학적 추적 기반의 GI 시설 평가 모델: 생태저류지, 침투도랑, 투수성포장, 식생수로를 대상으로)

  • Won, Jeongeun;Seo, Jiyu;Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.74-84
    • /
    • 2021
  • Active stormwater management is essential to minimize the impact of urban development and improve the hydrological cycle system. In recent years, the Low Impact Development (LID) technique for urban stormwater management is attracting attention as a reasonable alternative. The Storm Water Management Model (SWMM) is actively used in urban hydrological cycle improvement projects as it provides simulation functions for various GI (Green Infra) facilities through its LID module. However, in order to simulate GI facilities using SWMM, there are many difficulties in setting up complex watersheds and deploying GI facilities. In this study, a model that can evaluate the performance of GI facilities is proposed while implementing the core hydrological process of GI facilities. Since the proposed model operates based on hydrological routing, it can not only reflect the infiltration, storage, and evapotranspiration of GI facilities, but also quantitatively evaluate the effect of improving urban hydrological cycle by GI facilities. The applicability of the proposed model was verified by comparing the results of the proposed model with the results of SWMM. In addition, a discussion of errors occurring in the SWMM's permeable pavement system simulation is included.