• Title/Summary/Keyword: Active Power Control

Search Result 1,399, Processing Time 0.027 seconds

Novel Control Method for a Hybrid Active Power Filter with Injection Circuit Using a Hybrid Fuzzy Controller

  • Chau, MinhThuyen;Luo, An;Shuai, Zhikang;Ma, Fujun;Xie, Ning;Chau, VanBao
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.800-812
    • /
    • 2012
  • This paper analyses the mathematical model and control strategies of a Hybrid Active Power Filter with Injection Circuit (IHAPF). The control strategy based on the load harmonic current detection is selected. A novel control method for a IHAPF, which is based on the analyzed control mathematical model, is proposed. It consists of two closed-control loops. The upper closed-control loop consists of a single fuzzy logic controller and the IHAPF model, while the lower closed-control loop is composed of an Adaptive Network based Fuzzy Inference System (ANFIS) controller, a Neural Generalized Predictive (NGP) regulator and the IHAPF model. The purpose of the lower closed-control loop is to improve the performance of the upper closed-control loop. When compared to other control methods, the simulation and experimental results show that the proposed control method has the advantages of a shorter response time, good online control and very effective harmonics reduction.

Analysis and Application of Repetitive Control Scheme for Three-Phase Active Power Filter with Frequency Adaptive Capability

  • Sun, Biaoguang;Xie, Yunxiang;Ma, Hui;Cheng, Li
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.618-628
    • /
    • 2016
  • Active power filter (APF) has been proved as a flexible solution for compensating the harmonic distortion caused by nonlinear loads in power distribution power systems. Digital repetitive control can achieve zero steady-state error tracking of any periodic signal while the sampling points within one repetitive cycle must be a known integer. However, the compensation performance of the APF would be degradation when the grid frequency varies. In this paper, an improved repetitive control scheme with frequency adaptive capability is presented to track any periodic signal with variable grid frequency, where the variable delay items caused by time-varying grid frequency are approximated with Pade approximants. Additionally, the stability criterion of proposed repetitive control scheme is given. A three-phase shunt APF experimental platform with proposed repetitive control scheme is built in our laboratory. Simulation and experimental results demonstrate the effectiveness of the proposed repetitive control scheme.

PI and Fuzzy Logic Controller Based 3-Phase 4-Wire Shunt Active Filters for the Mitigation of Current Harmonics with the Id-Iq Control Strategy

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.914-921
    • /
    • 2011
  • Commencing with incandescent light bulbs, every load today creates harmonics. Unfortunately, these loads vary with respect to their amount of harmonic content and their response to problems caused by harmonics. The prevalent difficulties with harmonics are voltage and current waveform distortions. In addition, Electronic equipment like computers, battery chargers, electronic ballasts, variable frequency drives, and switching mode power supplies generate perilous amounts of harmonics. Issues related to harmonics are of a greater concern to engineers and building designers because they do more than just distort voltage waveforms, they can overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality is becoming more and more serious with each passing day. As a result, active power filters (APFs) have gained a lot of attention due to their excellent harmonic compensation. However, the performance of the active filters seems to have contradictions with different control techniques. The main objective of this paper is to analyze shunt active filters with fuzzy and pi controllers. To carry out this analysis, active and reactive current methods ($i_d-i_q$) are considered. Extensive simulations were carried out. The simulations were performed under balance, unbalanced and non sinusoidal conditions. The results validate the dynamic behavior of fuzzy logic controllers over PI controllers.

Implementation of a PWM Controlled Active AC Power Filter Using a Fast PWM Control Method (PWM 제어 능동 교류 전력 필터의 개발 및 속도 개선)

  • Kim, Jae-Hyun;Park, In-Gyu;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.457-462
    • /
    • 1987
  • This paper deals with the PWM controlled active AC power filter. A new PWM control method from the viewpoint of speed and simplicity is proposed. And a microprocessor-based controller is used to realize the active AC power filter. The existing PWM control methods are primarily based on Fourier series expansion and these methods need FFT calculation and solving nonlinear harmonic equations, which are heavy burden to real-time control. The proposed method is based upon generalized pulse series expansion and needs only definite integrals of harmonic signal. So, computational effort can be reduced by a large margin. The digital circuit using 16-bit microprocessor is designed to implement the actual active power filler.

  • PDF

A New Control Scheme of the Line-Interactive UPS Using the Series Active Compensator (직렬 능동 보상기를 이용한 Line-Interactive UPS의 새로운 제어 기법)

  • Jang, Hoon;Lee, Woo-Cheol;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.405-412
    • /
    • 2003
  • This paper presents a three-phase Line-Interactive uninterruptible power supply (UPS) system with series-parallel active power-line conditioning capabilities, using synchronous reference frame (SRF) based controller, which allows an effective power factor correction, source harmonic voltage compensation, load harmonic current suppression, and output voltage regulation. The three-phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low THD (total harmonic distortion). The control algorithm using SRF method and the active power flow through the Line-interactive UPS systems are described and studied. The simulation and experimental results are depicted in this paper to show the effect of the proposed algorithm.

Harmonic Current Compensation Using Active Power Filter Based on Model Predictive Control Technology

  • Adam, Misbawu;Chen, Yuepeng;Deng, Xiangtian
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1889-1900
    • /
    • 2018
  • Harmonic current mitigation is vital in power distribution networks owing to the inflow of nonlinear loads, distributed generation, and renewable energy sources. The active power filter (APF) is the current electrical equipment that can dynamically compensate for harmonic distortion and eliminate asymmetrical loads. The compensation performance of an APF largely depends on the control strategy applied to the voltage source inverter (VSI). Model predictive control (MPC) has been demonstrated to be one of the effective control approaches to providing fast dynamic responses. This approach covers different types of power converters due to its several advantages, such as flexible control scheme and simple inclusion of nonlinearities and constraints within the controller design. In this study, a finite control set-MPC technique is proposed for the control of VSIs. Unlike conventional control methods, the proposed technique uses a discrete time model of the shunt APF to predict the future behavior of harmonic currents and determine the cost function so as to optimize current errors through the selection of appropriate switching states. The viability of this strategy in terms of harmonic mitigation is verified in MATLAB/Simulink. Experimental results show that MPC performs well in terms of reduced total harmonic distortion and is effective in APFs.

Effective vibration control of multimodal structures with low power requirement

  • Loukil, Thamina;Ichchou, Mohamed;Bareille, Olivier;Haddar, Mohamed
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.435-451
    • /
    • 2014
  • In this paper, we investigate the vibration control of multimodal structures and present an efficient control law that requires less energy supply than active strategies. This strategy is called modal global semi-active control and is designed to work as effectively as the active control and consume less power which represents its major limitation. The proposed law is based on an energetic management of the optimal law such that the controller follows this latter only if there is sufficient energy which will be extracted directly from the system vibrations itself. The control algorithm is presented and validated for a cantilever beam structure subjected to external perturbations. Comparisons between the proposed law performances and those obtained by independent modal space control (IMSC) and semi-active control schemes are offered.

Single-Phase Hybrid Active Power Filter Using Rotating Reference Frame (회전좌표계를 이용한 단상 하이브리드형 능동 전력필터)

  • Kim Jin-Sun;Kim Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.377-386
    • /
    • 2005
  • This paper presents the control algorithm of single-phase hybrid active power filter for the compensation of harmonic current components in nonlinear R-L load with passive active Power filters. To construct two phase system, an imaginary second phase was made. In this proposed method, the new signal which is the delayed through the filtering by the phase-delay property of low-pass filter is used as the secondary phase. Because two-phases have the different phase, the instantaneous calculation of harmonic current is possible. In this paper, a reference voltage is created by multiplying the coefficient k by the compensation current using the rotating reference frame synchronized with the source-frequency, not applying to instantaneous reactive power theory which has been used with the existing fixed reference frames In order to verify the validities of the proposed control methods, experiments are carried out with the prototypes of single-phase hybrid active power filter.

Circulating Current Control in MMC-HVDC Considering Switching Device Current Capacity under Unbalanced Voltage Conditions (전압 불평형 조건에서 스위칭 소자의 전류용량을 고려한 MMC-HVDC 순환전류 제어기법)

  • Kim, Chun-Sung;Jung, Seung-Hwan;Hwang, Jung-Goo;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.55-65
    • /
    • 2016
  • This paper proposed a new control method which is capable of controlling circulating current considering current capacity of switching device. In the unbalanced voltage conditions, active power and reactive power have double line frequency. Thus, in order to provide active power without ripple, it is necessary to inject the negative sequence current components. However, when the negative current components is injected, it increases the total current flowing in the Arm, and in the Sub-module(SM) the current more than rated is impressed, which leads to destroy the system. Also, in impressing the circulating current reference of each arm, conventional control method impressed applicable $i_{dck}/3$ in the case of balanced voltage conditions. In the case of unbalanced conditions, as arm circulating current of three phase show difference due to the power impressed to each arm, reference of each arm is not identical. In this study, in the case of unbalanced voltage, within permitted current, the control method to decrease the ripple of active power is proposed, through circulating current control and current limitations. This control method has the advantage that calculates the maximum active power possible to generate capacity and impressed the current reference for that much. Also, in impressing circulating current reference, a new control method proposes to impress the reference from calculating active power of each phase. The proposed control method is verified through the simulation results, using the PSCAD/EMTDC.

Source Current Control Strategy of Active Power Filters for Unbalanced Load Compensation in Three-Phase Four-Wire Distribution Networks

  • Wang, Lei;Han, Xiaoqing;Meng, Runquan;Ren, Chunguang;Wang, Qi;Zhang, Baifu
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1545-1554
    • /
    • 2018
  • This paper proposes a modified control strategy to improve the performance of three-phase four-leg shunt active power filters (APFs) for the compensation of three phase unbalanced loads. Unbalanced current cannot be obtained accurately by a harmonic detector due to the lower frequency. The proposed control strategy eliminates conventional harmonic detectors by directly regulating the source current. Therefore, the computational complexity is greatly reduced and the performance of the APF is improved. A mathematic model has been developed based on the source currents. The corresponding controllers have been designed based on the sinusoidal internal model principle. The proposed control strategy can guarantee excellent compensation performance and stable operation after an extreme disturbance such as a short circuit fault. In addition, the proposed technique can selectively compensate specific harmonics. A 50kVA prototype APF is implemented in the laboratory to validate the feasibility and performance of the proposed control strategy.