• Title/Summary/Keyword: Active Oxygen

Search Result 728, Processing Time 0.033 seconds

Effects of Ginseng Saponins in Energy Metabolism, Memory, and Anti-neurotoxicity

  • Wang Lawrence C.H.;Lee Tze-fun
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.55-65
    • /
    • 2002
  • Ginseng has been used as a key constituent in traditional medicine prescriptions for centuries. Other than its well-known anti-stress and adaptogenic properties, ginseng has also been shown to be very effective in treating age-related deterioration in metabolic and memory functions. Although it is generally believed that the saponin (GS) fraction of the ginseng root accounts for the bioactivity of ginseng, a direct demonstration on which ginsenoside does what is still generally lacking. In the past decade, our laboratory has endeavored to identify the active GS components involved in energy metabolism, memory, and anti-neurotoxicity. To examine the ergogenic effects of GS in enhancing aerobic capacity, rats were subjected to either severe cold ($40^{\circ}C$ under helium-oxygen, two hours) or exercise workload $(70\%\;VO_{2}max,$ to exhaustion). Acute systemic injection (i.p.) of ginseng GS (5-20 mg/kg) significantly elevated both the total and maximum heat production in rats and improved their cold tolerance. However, pretreating the animal with the optimal dose (10 mg/kg) of GS devoid of $Rg_1\;and\;Rb_1$ failed to elicit any beneficial effects in improving cold tolerance. This indicates that either $Rb_1\;and/or\;Rg_1$ may be essential in exemplifying the thermogenic effect of GS. Further studies showed that only pretreating the animals with $Rb_1(2.5-5\;mg/kg),\;but\;not\;Rg_l,$ resulted in an increase in thermogenesis and cold tolerance. In contrast to the acute effect of GS on cold tolerance, enhancement of exercise performance in rats was only observed after chronic treatment (4 days). Further, we were able to demonstrate that both $Rb_1\;and\;Rg_1$ are effective in enhancing aerobic endurance by exercise. To illustrate the beneficial effects of GS in learning and memory, a passive avoidance paradigm (shock prod) was used. Our results indicated that the scopolamineinduced amnesia can be significantly reversed by chronically treating (4 days) the rats with either $Rb_1\;or\;Rg_1$ (1.25 - 2.5 mg/kg). To further examine its underlying mechanisms, the effects of various GS on ${\beta}-amyloid-modulated$ acetylcholine (ACh) release from the hippocampal slices were examined. It was found that inclusion of $Rb_1$ (0.1 ${\mu}M$), but not $Rg_1$, can attenuate ${\beta}-amyloid-suppressed$ ACh release from the hippocampal slices. Our results demonstrated that $Rb_1\;and\;Rg_1$ are the key components involved in various beneficial effects of GS but they may elicit their effects through different mechanisms.

  • PDF

Effects of Bambusae Caulis in Taeniam Extract on the UVB-induced Cell Death, Oxidative Stress and Matrix Metalloproteinase 1 Expression in Keratinocytes (각질세포에서 자외선B가 유도한 세포 사멸, 산화적 스트레스 및 matrix metalloproteinase 1 발현에 대한 죽여추출물의 영향)

  • Seok, Jin Kyung;Kwak, Jun Yup;Seo, Hyeong Ho;Suh, Hwa Jin;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.9-20
    • /
    • 2015
  • Ultraviolet radiation (UV) is a major cause of skin photoaging, and effective UV protecting agents are needed for the skin health and beauty. This study was undertaken to examine the effects of Bambusae caulis in Taeniam extract (BCTE) on UVB-induced cell death, oxidative stress and matrix metalloproteinase 1 (MMP1) expression in cell-based assays. HaCaT human keratinocytes were exposed to UVB in the presence of BCTE at different concentrations and resulting changes in cell viability and biochemical events were determined. The results showed that BCTE enhanced the viabilities of UVB-exposed cells, and attenuated apoptotic events such as cleavage of procaspase 3 to its active form, and the increase of Bax to Bcl-2 ratios. BCTE also attenuated the reactive oxygen generation and lipid peroxidation in cells exposed to UVB. Additionally, it attenuated the expression of matrix metalloproteinase 1 and the phosphorylation of c-Jun N-terminal kinase stimulated by UVB. Conclusively, the present study demonstrated that BCTE pro tected skin cells from the UVB-induced cell death, oxidative stress and MMP1 expression, suggesting its potential use as a cosmetic ingredient mitigating some features of the skin photoaging.

Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells

  • Seo, Yelim;Kim, Young-Won;Lee, Donghee;Kim, Donghyeon;Kim, Kyoungseo;Kim, Taewoo;Baek, Changyeob;Lee, Yerim;Lee, Junhyeok;Lee, Hosung;Jang, Geonwoo;Jeong, Wonyeong;Choi, Junho;Hwang, Doegeun;Suh, Jung Soo;Kim, Sun-Woo;Kim, Hyoung Kyu;Han, Jin;Bang, Hyoweon;Kim, Jung-Ha;Zhou, Tong;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.167-175
    • /
    • 2021
  • Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.

Study on the Platinum Deposition in Membrane of Polymer Electrolyte Membrane Fuel Cell during Electrode Degradation Process (고분자전해질 연료전지의 전극 열화 과정에서 고분자막에 석출된 백금에 관한 연구)

  • Oh, Sohyeong;Gwon, Hyejin;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.202-207
    • /
    • 2022
  • The study on electrode degradation of Proton Exchange Membrane Fuel Cell (PEMFC) was mainly studied on the particle growth and active area reduction of Pt on the electrode. The degradation of the electrode catalyst Pt in contact with the membrane affects the deterioration of the polymer membrane, but there are not many studies related to this. In this study, the phenomenon of the deposition of deteriorated Pt inside the polymer membrane during the accelerated electrode catalyst degradation test and its effects were studied. The voltage change (0.6 V ↔ 0.9 V) was repeated up to 30,000 cycles to accelerate the platinum degradation rate. When the voltage change cycle was repeated while oxygen was introduced into the cathode, the amount of Pt deposited inside the film was larger than when nitrogen was introduced. As the number of voltage change cycles increased, the amount of Pt deposited inside the membrane increased, and Pt dissolved in the cathode moved toward the anode, showing a uniform distribution throughout the membrane at 20,000 cycles. In the process of the accelerated electrode catalyst degradation test, the hydrogen crossover current density of the membrane did not change, and it was confirmed that the deposited Pt did not affect the durability of the membrane.

Multi-Layered Sintered Porous Transport Layers in Alkaline Water Electrolysis (다층 소결메쉬 확산체를 이용한 알칼라인 수전해 셀)

  • YEOM, SANG HO;YUN, YOUNG HWA;CHOI, SEUNGWOOK;KWON, JIHEE;LEE, SECHAN;LEE, JAE HUN;LEE, CHANGSOO;KIM, MINJOONG;KIM, SANG-KYUNG;UM, SUKKEE;KIM, CHANG-HEE;CHO, WON CHUL;CHO, HYUN-SEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.442-454
    • /
    • 2021
  • The porous transport layer (PTL) is essential to effectively remove oxygen and hydrogen gas from the electrode surface at high current density operation conditions. In this study, the effect of PTL with different characteristics such as pore size, pore gradient, interfacial coating was investigated by multi-layered sintered mesh. A water electrolysis single cell of active area of the 34.56 cm2 was constructed, and IV performance and impedance analysis were conducted in the range of 0 to 2.0 A/cm2. It was confirmed that the multi-layered sintered mesh PTL, which have an average pore size of 25 to 57 ㎛ and a larger pore gradient, removed bubbles effectively and thus seemed to improve IV performance. Also, it was confirmed that the catalytic metals such as Ni, NiMo coating on the PTL reduced activation overpotential, but increased mass transport overpotential.

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.

Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice

  • Zhang, Han;Su, Yong;Sun, Zhenghao;Chen, Ming;Han, Yuli;Li, Yan;Dong, Xianan;Ding, Shixin;Fang, Zhirui;Li, Weiping;Li, Weizu
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.665-675
    • /
    • 2021
  • Background: Ginsenoside Rg1 (Rg1), an active ingredient in ginseng, may be a potential agent for the treatment of Alzheimer's disease (AD). However, the protective effect of Rg1 on neurodegeneration in AD and its mechanism of action are still incompletely understood. Methods: Wild type (WT) and APP/PS1 AD mice, from 6 to 9 months old, were used in the experiment. The open field test (OFT) and Morris water maze (MWM) were used to detect behavioral changes. Neuronal damage was assessed by hematoxylin and eosin (H&E) and Nissl staining. Immunofluorescence, western blotting, and quantitative real-time polymerase chain reaction (q-PCR) were used to examine postsynaptic density 95 (PSD95) expression, amyloid beta (Aβ) deposition, Tau and phosphorylated Tau (p-Tau) expression, reactive oxygen species (ROS) production, and NAPDH oxidase 2 (NOX2) expression. Results: Rg1 treatment for 12 weeks significantly ameliorated cognitive impairments and neuronal damage and decreased the p-Tau level, amyloid precursor protein (APP) expression, and Aβ generation in APP/PS1 mice. Meanwhile, Rg1 treatment significantly decreased the ROS level and NOX2 expression in the hippocampus and cortex of APP/PS1 mice. Conclusions: Rg1 alleviates cognitive impairments, neuronal damage, and reduce Aβ deposition by inhibiting NOX2 activation in APP/PS1 mice.

Determination and Validation of Synthetic Antioxidants in Processed Foods Distributed in Korea

  • Park, Hyeon-Ju;Seo, Eunbin;Park, Jin-Wook;Yun, Choong-In;Kim, Young-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.297-305
    • /
    • 2022
  • Antioxidants are food additives that extend the shelf life of food products by preventing lipid rancidity caused by active oxygen. They can either be naturally-derived or manufactured synthetically via chemical synthesis. In this study, method validation of five synthetic antioxidants, namely butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, propyl gallate, and disodium ethylenediaminetetraacetic acid, was performed using a high performance liquid chromatography-ultraviolet visible detector, and the method applicability was evaluated by analyzing foods containing antioxidants. The coefficient of determination (R2) average was 0.9997, while the limit of detection and limit of quantification were 0.02-0.53 and 0.07-1.61 mg/kg, respectively. The intra and inter-day accuracies and precisions were 83.2±0.7%-98.7±2.1% and 0.1%-5.7% RSD, respectively. Inter-laboratory validation for accuracy and precision was conducted using the Food Analysis Performance Assessment Scheme quality control material. The results satisfied the guidelines presented by the AOAC International. In addition, the expanded uncertainty was less than 16%, as recommended by CODEX. Consequently, to enhance public health safety, the results of this study can be used as basis data for evaluating the intake of synthetic antioxidants and assessing their risks in Korea.

Suppression of Monosodium Urate-induced NLRP3 Inflammasome Activation by Garlic-derived Sulfur-containing Phytochemicals is Associated with Blocking ROS Generation in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 마늘 유래 황 함유 화합물에 의한 요산 유도 inflammasome 활성화의 억제는 ROS 생성 차단과 연관성이 있음)

  • Min Yeong Kim;Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.349-356
    • /
    • 2023
  • Gout, a chronic inflammatory arthritic disease, is characterized by hyperuricemia. Gout can be induced by an inflammatory response to monosodium urate (MSU) crystals mediated by pro-inflammatory cytokine release following activation of the NOD-like receptor protein 3 (NLRP3) inflammasome. Many sulfur-containing phytochemical compounds in garlic (Allium sativum L.) are considered active ingredients because of their potential pharmacological benefits for various diseases, but their efficacy in NLRP3 inflammasome activation-mediated gout has not been demonstrated. In this study, we investigated whether diallyl disulfide (DADS) and diallyl trisulfide (DATS), representative garlic-derived sulfur compounds, have an inhibitory effect on MSU-induced NLRP3 inflammasome activation. Our results showed that under non-cytotoxic conditions, DADS and DATS significantly blocked nitric oxide production and interleukin (IL)-1β release in response to MSU in lipopolysaccharide (LPS)-primed RAW 264.7 macrophages. DADS and DATS also attenuated enhanced expression of NLRP3 and its adapter protein, apoptosis-associated speck-like protein, which was associated with downregulation of and caspase-1 p20 and IL-1β expression, suggesting that MSU-induced LRP3 inflammasome activation was counteracted by DADS and DATS. Furthermore, DADS and DATS blocked oxidative stress, an upstream event for NLRP3 inflammasome activation, as evidenced by the fact that they scavenged reactive oxygen species (ROS) production. Taken together, our findings demonstrate that DADS and DATS suppressed NLRP3 inflammasome activation by inhibiting the ROS/NLRP3 pathway and that they have potential as treatments for NLRP3-dependent gouty arthritis.

Chemical Durability Test of Thin Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 박막의 화학적 내구성 평가)

  • Sohyeong Oh;Donggeun Yoo;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.362-367
    • /
    • 2023
  • Recently, research and development of proton exchange membrane fuel cells (PEMFC) membranes are progressing in the direction of thinning to reduce prices and improve performance. Demand for hydrogen-powered vehicles for commercial vehicles is also increasing, and their durability should be five times greater than those for passenger vehicles. Despite the thinning of the membranes, the durability of the membranes must be increased five times, so the improvement of the durability of the membranes has become more important. Since the acceleration durability evaluation time also needs to be shortened, the protocol using oxygen instead of air in the existing protocol was applied to a 10 ㎛ thin membrane to evaluate durability. The accelerated durability test (Open circuit voltage holding) was terminated at 720 hours. If the air-based department of energy (DOE) protocol was used, a lifespan of 450,000 km of driving hours would be expected, with a durability of about 1,500 hours. During the chemical durability evaluation, the active area of the electrode decreased by 51%, suggesting that catalyst degradation had an effect on membrane durability. Reducing the catalyst degradation rate is expected to increase membrane durability.