• Title/Summary/Keyword: Active Oxygen

Search Result 730, Processing Time 0.026 seconds

A Study on Factors Affecting the Effect of Blue Light Blocking in Sunscreen (자외선 차단제품에서 블루라이트 차단 효과에 영향을 주는 인자에 관한 연구)

  • Park, Soo Jin;Kwak, Byeong Mun;Lee, Mi Gi;Bin, Bum Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.383-390
    • /
    • 2020
  • Blue light is a blue-based light existing at a wavelength between 380 and 450 nm, and it has been reported that it induces active oxygen and causes aging, and accordingly, interest in the blue light blocking effect is increasing. In this study, the effects of the polarity of oil, viscosity of the formulation, type of emulsifier, emulsified particles, and inorganic UV blocking agents on the blue light blocking effect in UV blocking products were investigated. As a result, it was confirmed that the blue light blocking rate increased as the polarity of the oil became similar to that of the organic UV blocker, and the higher the viscosity of the formulation, the higher the blue light blocking rate. The types of emulsifiers and emulsified particles had little effect on the blue light blocking effect, and the presence of inorganic UV blocking agents was found to be one of the factors that greatly influenced the blue light blocking rate. These results can effectively increase the efficiency of blocking blue light, and may be used in the development of blue light blocking products and formulation research in the future.

WALANT: A Discussion of Indications, Impact, and Educational Requirements

  • Shahid, Shahab;Saghir, Noman;Saghir, Reyan;Young-Sing, Quillan;Miranda, Benjamin H.
    • Archives of Plastic Surgery
    • /
    • v.49 no.4
    • /
    • pp.531-537
    • /
    • 2022
  • Wide-awake, local anesthesia, no tourniquet (WALANT) is a technique that removes the requirement for operations to be performed with a tourniquet, general/regional anesthesia, sedation or an anesthetist. We reviewed the WALANT literature with respect to the diverse indications and impact of WALANT to discuss the importance of future surgical curriculum integration. With appropriate patient selection, WALANT may be used effectively in upper and lower limb surgery; it is also a useful option for patients who are unsuitable for general/regional anesthesia. There is a growing body of evidence supporting the use of WALANT in more complex operations in both upper and lower limb surgery. WALANT is a safe, effective, and simple technique associated with equivalent or superior patient pain scores among other numerous clinical and cost benefits. Cost benefits derive from reduced requirements for theater/anesthetic personnel, space, equipment, time, and inpatient stay. The lack of a requirement for general anesthesia reduces aerosol generating procedures, for example, intubation/high-flow oxygen, hence patients and staff also benefit from the reduced potential for infection transmission. WALANT provides a relatively, but not entirely, bloodless surgical field. Training requirements include the surgical indications, volume calculations, infiltration technique, appropriate perioperative patient/team member communication, and specifics of each operation that need to be considered, for example, checking of active tendon glide versus venting of flexor tendon pulleys. WALANT offers significant clinical, economic, and operative safety advantages when compared with general/regional anesthesia. Key challenges include careful patient selection and the comprehensive training of future surgeons to perform the technique safely.

Effect of Vanadium Loading Amount on Pt/V/TiO2 Catalyst on NH3-SCO Reaction (NH3-SCO 반응에서 Vanadium 담지함량이 Pt/V/TiO2 촉매에 미치는 영향)

  • Kim, Min Su;Kim, Ki Wang;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.594-599
    • /
    • 2022
  • In the study, NH3-SCO (selective catalytic oxidation) reaction activity accodrding to vanadium loading amount were compared when preparing Pt/V/TiO2. Considering both NH3 conversion rate and N2 selectivity, V 2 wt% loading of the catalyst showed the best activity. When the correlation between physical/chemical characteristics and reaction activity was confirmed, it was confirmed that the increase in lattice oxygen and (V3+ + V4+) ratios were active factor. In addition, when the SO2 durability experiment was conducted using the best catalyst, it was confirmed that the influence was insignificant even if the high concentration of SO2 was injected.

Research on the Anti-Breast Cancer and Anti-Inflammatory Effects of Chungganhaewool-tang and Shipyeukmiyeugi-eum (청간해울탕(淸肝解鬱湯)과 십륙미유기음(十六味流氣飮)의 유방암에 대한 항암, 항염 효능 연구)

  • Ryu, Hyo-Kyung;Jung, Min-Jae;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.35 no.3
    • /
    • pp.1-23
    • /
    • 2022
  • Objectives: The purpose of this study is to evaluate anti-breast cancer and anti-inflammatory effects of Chungganhaewool-tang and Shipyeukmiyeugi-eum. Methods: MDA-MB-231 cells were used to measure cytotoxicity, Reactive oxygen species (ROS) production, protein expression amounts of Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), Cytochrome C Caspase-3, Caspase-7, Caspase-9, Poly ADP-ribose polymerase (PARP), Nuclear factor erythroid-2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1) and NAD (P) H Quinone Oxidoreductase 1 (NQO1) to evaluate the anti-breast cancer effects of Chungganhaewool-tang (CHT) and Shipyeukmiyeugi-eum (SYE), and THP-1 cells, differentiated into macrophage and induced inflammation with Lipopolysaccharide (LPS), were used to measure production amounts of ROS, Nitric oxide (NO), and protein expression amounts of Inducible nitric oxide synthase (iNOS), Cyclooxygenase (COX-2), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6) and Tumor necrosis factor-alpha (TNF-α) to evaluate the anti-inflammatory effects of CHT and SYE. Results: CHT and SYE reduced MDA-MB-231 cell counts, increased protein expression of Bax and Cytochrome C, and decreased protein expression of Bcl-2, Bcl-xl. The protein expression amounts of Caspase-3, 7, and 9 decreased, but amounts of the active form, cleaved Caspase-3, 7, and 9, increased. In addition, PARP protein expression decreased, the amount of PARP protein in the cleaved form increased, and the amount of protein expressions of Nrf2 and HO-1 decreased, but NQO1 showed no significant difference. In THP-1 cells CHT and SYE reduced ROS and NO, and reduced protein expressions of iNOS, COX-2, IL-1, and TNF-α, but only SYE groups reduced IL-6. Conclusions: This study suggests that CHT and SYE have potential to be used as treatments for breast cancer.

Electrochemical properties of AZ31, AZ61 magnesium alloy electrodes for eco-friendly Magnesium-air battery (친환경 마그네슘-공기 전지용 AZ31, AZ61 마그네슘 합금 전극의 전기화학적 특성)

  • Choi, Weon-Kyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.17-22
    • /
    • 2021
  • Eco-friendly magnesium-air battery is a kind of metal-air battery known as a primary battery with a very high theoretical discharge capacity. This battery is also called a metal-fuel cell from the viewpoint of using oxygen in the atmosphere as a cathode active material and magnesium alloy as a fuel. Since battery performance is determined by the properties of the magnesium alloy used as a anode, more research and development of the magnesium alloy electrode as a anode material are required in order to commercialize it as a high-performance battery. In this study, the commercialized magnesium alloys(AZ31, AZ61) were selected and then electrochemical measurements and discharge test were conducted. Electrochemical properties of magnesium alloys were investigated by OCP changes, Tafel parameters and CV measurement, and the feasibilities of AZ61 alloy with excellent discharge capacity(1410mAhg-1) as electrode materials were evaluated through CC discharge experiments.

Chemical Composition and Alkaline Pulping of a Stem of Red Pepper (Capsium annuum L.) (고추 줄기의 화학 조성분 및 알칼리 펄프화)

  • Kim, Chul Hyun;Kim, Young Yook;Park, Soung Bae;Eom, Tae Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.26-32
    • /
    • 2004
  • Chemical compositions and chemical structure of lignin and alkali cooking condition and fiber length of red pepper were investigated and compared to those of woods. The chemical compositions of red pepper were higher component of extraction than that of wood. The contents of carbon and hydrogen of Klason lignin in red pepper were similar to that of pine and birch wood. On the other hand, the contents of oxygen and nitrogen of Klason lignin in the red pepper were higher than that of wood. The result of nitrobenzene oxidation shows that Klason lignin of red pepper was similar to lignin of softwood. The best alkali cooking condition of red pepper was 0.2%-anthraquinone, active alkali of 20% and liquor ratio of 1:7. The fiber length of red pepper was about 0.47 mm. Therefore, the red pepper fiber will be able to use special purpose of short fiber.

Investigating the Reaction Characteristics of Electrolyte Dimethyl Carbonate(DMC) under Thermal Runaway Conditions of Lithium-Ion Battery (리튬이온배터리 열폭주 조건에서 전해질 Dimethyl Carbonate(DMC) 반응 특성 분석)

  • Jeon, Min-Kyu;Lee, Eun-Song;Yoon, Hong-Sik;Keel, Sang-In;Park, Hyun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1275-1284
    • /
    • 2022
  • This study provides an investigating the electrolyte reaction characteristics during thermal runaway of a lithium-ion battery(LIB). Dimethyl carbonate(DMC) is known as the main substance that makes up the electrolyte. The mono-molecular decomposition characteristics of DMC were derived through numerical analysis. Cobalt oxide can release oxygen under high temperature conditions. Also, DMC is converted to CH4, H2, CO, and CO2. Especially, it was found that the decomposition of the DMC begins at a temperature range of 340-350℃, which dramatically increases the internal pressure of the LIB. In the by-products gases, the molar ratio of CO and CO2 changed according to the molecular structure of DMC and temperature conditions. The correlation of the [CO]/[CO2] ratio according to the temperature during thermal runaway was derived, and the characteristics of the reaction temperature could be estimated using the molar ratio as an indicator. In addition, the oxidation and decomposition characteristics of DMC according to the residence time for each temperature were estimated. When DMC is exposed to low temperature for a long time, both oxidation and decomposition may occur. There is possibility of not only increasing the internal pressure of the LIB, but also promoting thermal runaway. In this study, internal environment of LIB was identified and the reaction characteristics between the active materials of the cathode and electrolyte were investigated.

Effect of Number of Shutdown on the Decrease of Performance in PEM Water Electrolysis (PEM 수전해에서 정지횟수가 성능 감소에 미치는 영향)

  • Cheunho Chu;Jongwon Yang;Ilchai Na;Yoonjin Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.202-207
    • /
    • 2023
  • In the case of driving water electrolysis by receiving surplus electricity from solar and wind power generation, operation and stopping must be repeated according to weather fluctuations. When the PEMWE(Polymer Electrolyte Membrane Water Electrolysis) is driven and stopped, the PEM fuel cell is in the same state as the PEM fuel cell due to the residual hydrogen and oxygen, and the high potential of the water electrolysis formed during operation is highly likely to cause degradation of the electrode and membrane even during stopping. In this study, in order to check how much degradation of the electrode and membrane progresses during the repeated driving/shutdown process of PEM water electrolysis, the performance decrease was measured by changing the number of driving/shutdown for 144 hours. Changes in electrode catalyst active area, hydrogen permeability and fluorine emision rate of membranes were analyzed to measure changes in the properties of electrodes and polymer membranes. Overall, the PEMWE performance decreased as the number of stops increased. When stopped 5 times in 144 hours, the IrOx catalyst activity decreased by more than 30%, and the hydrogen permeability increased by 80%, confirming that both the electrode and the membrane were deteriorated.

The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

  • Lee, Jaehyun;Shin, Jihey;Snaith, Owain N.;Kim, Yonghwi;Few, C. Gareth;Devriendt, Julien;Dubois, Yohan;Cox, Leah M.;Hong, Sungwook E.;Kwon, Oh-Kyoung;Park, Chan;Pichon, Christophe;Kim, Juhan;Gibson, Brad K.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2020
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box. we zoom-in on a high-resolution cuboid region with a volume of 1049 × 114 × 114 Mpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder to analyse the large outputs of HR5. The simulation successfully reproduces many observations, such as the cosmic star formation history, connectivity of galaxy distribution and stellar mass functions. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.

  • PDF

Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers (표면 처리에 따른 입상활성탄 및 활성탄소섬유의 중금속 흡착)

  • Kang, Kwang Cheol;Kwon, Soo Han;Kim, Seung Soo;Choi, Jong Won;Chun, Kwan Sik
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.285-289
    • /
    • 2006
  • In this study, the effect of an acidic treatment on granular activated carbon (GAC) and activated carbon fibers (ACF) was investigated for a $Pb^{2+}$ and $Ni^{2+}$ ion adsorption. 1.0 M nitric acid solution was used as the acid solution for the surface treatment. Surface properties of the GAC and ACF were characterized by the pH, elemental analysis and pHpzc (pH of the point of zero charge). Their specific surface area and the pore structure were also evaluated by the nitrogen adsorption data at 77K. As a result, the acidic treatment led to an increase of the oxygen-containing functional groups. Furthermore, the adsorption capacity of the acid-treated GAC and ACF was improved in the order of acidic-ACF > untreated-ACF > acidic-GAC > untreated-GAC, though the decrease in specific surface area induced by a pore blocking of the functional groups was observed.