• Title/Summary/Keyword: Active Oxygen

Search Result 728, Processing Time 0.029 seconds

Kinetics of Oxidative Coupling of Methane over NaCl/ZnO/α-Al2O3 Catalyst (NaCl/ZnO/α-Al2O3 촉매상에서 메탄의 Oxidative Coupling의 속도론적 고찰)

  • Kim, Sang-Chai;Seo, Ho-Joon;Sunwoo, Chang-Shin;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.256-265
    • /
    • 1992
  • The kinetics for the oxidative coupling of methane over NaCl(30wt%)/ZnO(60wt%)/${\alpha}-Al_2O_3$ catalyst was investigated, and then the active oxygen species were discussed. The conversion rate of methane was measured at the atmospheric pressure with various combinations of partial pressure of methane and oxygen at temperature range of $650^{\circ}C{\sim}750^{\circ}C$, at conversions less than with 10%. These rate data were then used to verify the proposed Langmuir-Hinshelwood kinetic equation. The rate limiting step appeared to be the formation of the methyl radicals by the reactin of the adsorbed methane and the adsorbed oxygen, which were adsorbed on the different active sites of the catalyst. The activation energy of the methyl radical formation was estimated to be ca. 39 kcal/mol. From the kinetic studies, the oxygen species respolsible for the formation of methyl radicals was proposed to be diatomic oxygen such as $O{_2}{^{2-}}$ or $O_2{^-}$ on the surface.

  • PDF

Effect of Mn-addition on Catalytic Activity of $Mn/In_2O_3$ in Methane Activation

  • Park, Jong Sik;Jun Jong Ho;Kim Yong Rok;Lee Sung Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1058-1064
    • /
    • 1994
  • Mn/In$_2O_3$ systems with a variety of Mn mol${\%}$ were prepared to investigate the effect of Mn-addition on the catalytic activity of Mn/In$_2O_3$ in the oxidative coupling of methane. The oxidative coupling of methane was examined on pure In$_2O_3$ and Mn/In$_2O_3$ catalysts by cofeeding gaseous methane and oxygen under atmospheric pressure between 650 and 830 $^{\circ}C$. Although pure In$_2O_3$ showed no C$_2$ selectivity, both the C$_2$ yield and the C$_2$ selectivity were increased by Mn-doping. The 5.1 mol${\%}$ Mn-doped In$_2O_3$ catalyst showed the best C$_2$ yield of 2.6${\%}$ with a selectivity of 19.1${\%}$. The electrical conductivities of pure and Mn-doped In$_2O_3$ systems were measured in the temperature range of 25 to 100 $^{\circ}C$ at PO$_2$'S of 1 ${\times}$ 10$^{-7}$ to 1 ${\times}$ 10 $^{-1}$ atm. The electrical conductivities were decreased with increasing Mn mol${\%}$ and PO$_2$, indicating the specimens to be n-type semiconductors. Electrons serve as the carriers and manganese can act as an electron acceptor in the specimens. Manganese ions doped in In$_2O_3$ inhibit the ionization of neutral interstitial indium or the transfer of lattice indium to interstitial sites and increase the formation of oxygen vacancy, giving rise to the increase of the concentration of active oxygen ion on the surface. It is suggested that the active oxygen species adsorbed on oxygen vacancies are responsible for the activation of methane.

Characteristics of SO2 Oxidation of Pt/TiO2 Catalyst according to the Properties of Platinum Precursor (Platinum Precursor 특성에 따른 Pt/TiO2 촉매의 SO2 산화 반응특성 연구)

  • Kim, Jae Kwan;Park, Seok Un;Nam, Ki Bok;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.368-376
    • /
    • 2020
  • In this study, an analysis on the reaction characteristics of a catalyst using platinum (Pt) as an active oxidation metal catalyst for controlling SO2 was performed. Pt/TiO2 catalyst was prepared by using Pt as various precursor forms on a titania (TiO2) support, and used for the experiment. There was no difference in performance of SO2 oxidation according to Pt valence states such as Pt2+ or Pt4+ on Pt/TiO2, and Pt chloride species such as PtClx reduces SO2 oxidation performance. In addition, as a result of analyzing the valence state of the catalyst before and after the SO2 oxidation reaction by XPS analysis, a decrease in lattice oxygen and an increase in surface chemisorbed oxygen after the SO2 oxidation reaction were confirmed. Therefore it can be suggested that the oxidation reaction of SO2 when using the Pt/TiO2 catalyst is the major one following the Mar-Van Krevelen mechanism where the reaction of lattice oxygen corresponding to PtOx and the oxidation-reduction reaction by oxygen vacancy occur. Overall, it can be confirmed that the oxygen species of PtOx (Pt2+ or Pt4+) present on the catalyst acts as a major active site.

Effect of Sulfurization on SILAR Synthesized Cobalt Phosphate Hydrate Nanosheets for Oxygen Evolution Reaction

  • Kamble, Girish;Malavekar, Dhanaji;Jang, Suyoung;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.408-413
    • /
    • 2022
  • The oxygen evolution reaction (OER) is very sluggish compared to the hydrogen evolution reaction (HER). Considering this difference is essential when designing and developing a cost-effective and facile synthesis method for a catalyst that can effectively perform OER activity. The material should possess a high surface area and more active sites. Considering these points, in this work we successfully synthesized sheets of cobalt phosphate hydrate (CP) and sulphurated cobalt phosphate hydrate (CPS) material, using simple successive ionic layered adsorption and reaction (SILAR) methods followed by sulfurization. The CP and CPS electrodes exhibited overpotentials of 279 mV with a Tafel slope of 212 mV dec-1 and 381 mV with a Tafel slope of 212 mV dec-1, respectively. The superior performance after sulfurization is attributed to the intrinsic activity of the deposited well-aligned nanosheet structures, which provided a substantial number of electrochemically active surface sites, speeded electron transfer, and at the same time improved the diffusion of the electrolyte.

Study on The Oxygen Transfer Properties of Airlift Pump (에어리프트 펌프의 산소 전달 특성에 관한 연구)

  • OH Se-Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.451-458
    • /
    • 1997
  • The oxygen transfer coefficient was not significantly affected by either flow pattern, initial bubble size or the wastes present in the water studied. Surface active substances in the water did however influence the transition from bubble to slug flow. Airlift with length to diameter ratios less than 50 suffered from considerable losses in efficiency. When properly designed, airlift pumping efficiencies were comparable to those of conventional centrifugal pumps and the oxygen transfer efficiency were as high as or higher than those of diffused aeration systems.

  • PDF

Estimation of Kinetic Parameters for Biomass Growth Using Micro-nano Bubbles Reactor (마이크로-나노버블 반응조를 이용한 미생물성장 동력학 계수의 추정에 관한 연구)

  • Han, Young-Rip;Jung, Byung-Gil;Jung, Yoo-Jin;Cho, Do-Hyun;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.647-653
    • /
    • 2010
  • The objectives of this research are to evaluate and compare the oxygen transfer coefficients($K_{La}$) in both a general bubbles reactor and a micro-nano bubbles reactor for effective operation in sewage treatment plants, and to understand the effect on microbial kinetic parameters of biomass growth for optimal biological treatment in sewage treatment plants when the micro-nano bubbles reactor is applied. Oxygen transfer coefficients($K_{La}$) of tap water and effluent of primary clarifier were determined. The oxygen transfer coefficients of the tap water for the general bubbles reactor and micro-nano bubbles reactor were found to be 0.28 $hr^{-1}$ and 2.50 $hr^{-1}$, respectively. The oxygen transfer coefficients of the effluent of the primary clarifier for the general bubbles reactor and micro-nano bubbles reactor were found be to 0.15 $hr^{-1}$ and 0.91 $hr^{-1}$, respectively. In order to figure out kinetic parameters of biomass growth for the general bubbles reactor and micro-nano bubbles reactor, oxygen uptake rates(OURs) in the saturated effluent of the primary clarifier were measured with the general bubbles reactor and micro-nano bubbles reactor. The OURs of in the saturated effluent of the primary clarifier with the general bubbles reactor and micro-nano bubbles reactor were 0.0294 mg $O_2/L{\cdot}hr$ and 0.0465 mg $O_2/L{\cdot}hr$, respectively. The higher micro-nano bubbles reactor's oxygen transfer coefficient increases the OURs. In addition, the maximum readily biodegradable substrate utilization rates($K_{ms}$) for the general bubbles reactor and micro-nano bubbles reactor were 3.41 mg COD utilized/mg active VSS day and 7.07 mg COD utilized/mg active VSS day, respectively. The maximum specific biomass growth rates for heterotrophic biomass(${\mu}_{max}$) were calculated by both values of yield for heterotrophic biomass($Y_H$) and the maximum readily biodegradable substrate utilization rates($K_{ms}$). The values of ${\mu}_{max}$ for the general bubbles reactor and micro-nano bubbles reactor were 1.62 $day^{-1}$ and 3.36 $day^{-1}$, respectively. The reported results show that the micro-nano bubbles reactor increased air-liquid contact area. This method could remove dissolved organic matters and nutrients efficiently and effectively.

Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

  • Kim, Eunjong;Lee, Dong-Hyun;Won, Seunggun;Ahn, Heekwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.753-758
    • /
    • 2016
  • Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg $O_2/g$ VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

Relative Biopotency of Tri-iodothyronine and Thyroxine for Inducing Oxygen Consumption in Young Chicks (유추의 산소소비량 촉진에 관한 Tri-iodothyronine과 Thyroxine의 생물학적 효력)

  • 황보종;하정기
    • Korean Journal of Poultry Science
    • /
    • v.17 no.2
    • /
    • pp.79-82
    • /
    • 1990
  • An experiment was conducted to evaluate relative biopotency of tri-iodothyronine ($T_3$) and thyroxine ($T_4$) to induce oxygen consumption in young chicks. Four experimental groups of 3 chicks were injected with $T_3$ or $T_4$ at a dose of 500 or 1000mg per kg body weight, and thereafter oxygen consumption was measured by indirect calorimetry using a respiration apparatus. Oxygen consumption was significantly increased at 2 and 4 hour in the $T_3$ or $T_4$ treated chicks at 500mg at 2 hour. From coefficient of a multiple regression equation of oxygen consumption on $T_3$ or $T_4$, it was concluded that $T_3$ was shown to be two to three times as biologically active as $T_4$.

  • PDF

Preparation of Highly Active Metathesis Catalyst from Rhenium Carbonyl and its Catalysis (레늄카보닐에 의한 고활성 메타세시스 촉매제조 및 그의 촉매작용)

  • Ahn, Ho-Geun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.115-120
    • /
    • 1998
  • The surface chemistry of $Re_2(CO)_{10}$ deposition for preparing highly dispersed rhenium catalysts and the formation of active site for the metathesis were studied. Alumina as support was treated at 1223K(DA) and 773k(PDA), respectively. The metathesis activity of the catalysts at 298K was measured by using pure propene under atmospheric pressure. The oxidation number of rhenium on PDA was very high, and that on DA was zero-valent with highly dispersed state. The prepared Re/DA catalyst was easily activated by treating with oxygen gas at low temperatures after thermal decomposition at high temperatures. The activity of Re/DA catalyst, even with very low rhenium loading, was much higher than that of Re/PDA or conventional $Re_2O_7/Al_2O_3$ catalysts. Therefore, rhenium carbonyl was effective for preparing a highy active metathesis catalyst with very low rhenium loading. Rhenium ion on Re/DA catalyst seemed to be bonded to two oxygen atoms on DA surface, that is, two-valent. The two-valent rhenium ion was changed to about six-valent by treating with oxygen. It could be considered that propene metathesis occurred through carbene complex which was formed on the six-valent rhenium ions.

  • PDF

Influence of Oxygen Partial Pressure on ZnO Thin Films for Thin Film Transistors

  • Kim, Jae-Won;Kim, Ji-Hong;Roh, Ji-Hyoung;Lee, Kyung-Joo;Moon, Sung-Joon;Do, Kang-Min;Park, Jae-Ho;Jo, Seul-Ki;Shin, Ju-Hong;Yer, In-Hyung;Koo, Sang-Mo;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.106-106
    • /
    • 2011
  • Recently, zinc oxide (ZnO) thin films have attracted great attention as a promising candidate for various electronic applications such as transparent electrodes, thin film transistors, and optoelectronic devices. ZnO thin films have a wide band gap energy of 3.37 eV and transparency in visible region. Moreover, ZnO thin films can be deposited in a poly-crystalline form even at room temperature, extending the choice of substrates including even plastics. Therefore, it is possible to realize thin film transistors by using ZnO thin films as the active channel layer. In this work, we investigated influence of oxygen partial pressure on ZnO thin films and fabricated ZnO-based thin film transistors. ZnO thin films were deposited on glass substrates by using a pulsed laser deposition technique in various oxygen partial pressures from 20 to 100 mTorr at room temperature. X-ray diffraction (XRD), transmission line method (TLM), and UV-Vis spectroscopy were employed to study the structural, electrical, and optical properties of the ZnO thin films. As a result, 80 mTorr was optimal condition for active layer of thin film transistors, since the active layer of thin film transistors needs high resistivity to achieve low off-current and high on-off ratio. The fabricated ZnO-based thin film transistors operated in the enhancement mode with high field effect mobility and low threshold voltage.

  • PDF