• Title/Summary/Keyword: Active Noise Canceling

Search Result 17, Processing Time 0.024 seconds

Multiple-Channel Active Noise Control by ANFIS and Independent Component Analysis without Secondary Path Modeling

  • Kim, Eung-Ju;Lee, Sang-yup;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.22.1-22
    • /
    • 2001
  • In this paper we present Multiple-Channel Active Noise Control[ANC] system by employing Independent Component Analysis[ICA] and Adaptive Network Fuzzy Inference System[ANFIS]. ICA is widely used in signal processing and communication and it use prewhiting and appropriate choice of non-linearities, ICA can separate mixed signal. ANFIS controller is trained with the hybrid learning algorithm to optimize its parameters for adaptively canceling noise. This new method which minimizes a statistical dependency of mutual information(MI) in mixed low frequency noise signal and there is no need to secondary path modeling. The proposed implementations achieve more powerful and stable noise reduction than Filtered-X LMS algorithms which is needed for LTI assumption and precise secondary error

  • PDF

Implementation of the Active Noise Controller Using Inverse Model (역모델을 이용한 능동소음 제어기 구현)

  • Yie, Gang-Wook;Jung, Yong-Hee;Jung, Yang-Woong;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.323-326
    • /
    • 1992
  • In this paper, the active noise control(ANC) system using the inverse modeling techiniques is presented. The nonlinearity and time delay of the transfer function from the secondary speaker to the error microphone makes the ANC system have poor performance. To solve this problem, the inverse model technique and filtered-X LMS algorithm is using proposed. This proposed ANC system is implemented using DSP chip and operated in on-line. The experimental results show that this ANC system has better noise canceling performance than that used LMS only about 5-15[db]

  • PDF

FxLMS Algorithm for Active Vibration Control of Structure By Using Inertial Damper with Displacement Constraint (관성형 능동 댐퍼를 이용한 구조물 진동 제어에서 댐퍼 질량의 변위 제한을 고려한 FxLMS 알고리즘)

  • Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.545-557
    • /
    • 2021
  • Engine is the main source of vibration that generates unwanted noise and vibration of vehicle chassis. Especially, in submarine applications, radiation of noise signatures can be detected at some distance away from the submarine using a sonar array. Thus quiet operation is crucial for submarine's survivability. This study addresses reduction of the force transmissibility originating from engines and transmitted to hull through engine mounts. An inertial damper, as an actuator of hybrid mount system, is addressed to reduce even further the level of vibration. Narrow band FxLMS algorithms are broadly used to cancel the vibration of engine mount because of its excellent performance of canceling narrow band noise. However, in real active dampers, the maximum displacement of damper mass is kinematically restricted. When the control input signal from the FxLMS algorithm exceeds this limitation, the damper mass will collide with the mechanical stops and results in many problems. Originated from these, a modified narrow band FxLMS algorithm based on the equalizer technique with the maximum allowable displacement of active damper mass is proposed in this study. Some simulation results showed that the propose algorithm is effective to suppress vibration of engine mount while ensuring given displacement constraint.

Secondary Path Estimation Algorithm Based on Residual Music Canceller for Noise Cancelling Headphone (노이즈 캔슬링 헤드폰에 적합한 잔여 음악 제거기 기반의 2차 경로 추정 알고리즘)

  • Ji, Youna;Lee, Keunsang;Park, Youngcheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.377-384
    • /
    • 2015
  • An active noise control (ANC) algorithm for noise canceling headphone is proposed. In this study, the feedback ANC operated with the filtered-x least mean square algorithm (FxLMS) algorithm is used to attenuate the undesired noise. Also an adaptive residual music canceller (RMC) is proposed for enhancing the accuracy of the reference signal of the feedback ANC. Simulation results show that a high quality of music sound can be consistently achieved in a time-varying secondary path situation.

Active cancellation of phase noise induced by an optical fiber for delivery of optical frequency standard (광섬유를 통한 광 주파수 전송에서 광 위상 잡음의 능동 제거)

  • Lee, Won-Kyu;Kim, Jae-Wan;Ryu, Han-Young;Kim, Eok-Bong
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2007
  • We have transferred a narrow-linewidth $1.5{\mu}m$ laser beam through a 525 m fiber network with excellent transfer stability. The fiber-induced optical phase noise during the fiber transmission is cancelled by configuring a noise-canceling servo. The transfer instability was $2{\times}10^{-17}$ at 1 s of averaging time. We quantitatively analyzed the transferred optical frequency in the frequency domain and in the time domain.

Lightweight FPGA Implementation of Symmetric Buffer-based Active Noise Canceller with On-Chip Convolution Acceleration Units (온칩 컨볼루션 가속기를 포함한 대칭적 버퍼 기반 액티브 노이즈 캔슬러의 경량화된 FPGA 구현)

  • Park, Seunghyun;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1713-1719
    • /
    • 2022
  • As the noise canceler with a small processing delay increases the sampling frequency, a better-quality output can be obtained. For a single buffer, processing delay occurs because it is impossible to write new data while the processor is processing the data. When synthesizing with anti-noise and output signal, this processing delay creates additional buffering overhead to match the phase. In this paper, we propose an accelerator structure that minimizes processing delay and increases processing speed by alternately performing read and write operations using the Symmetric Even-Odd-buffer. In addition, we compare the structural differences between the two methods of noise cancellation (Fast Fourier Transform noise cancellation and adaptive Least Mean Square algorithm). As a result, using an Symmetric Even-Odd-buffer the processing delay was reduced by 29.2% compared to a single buffer. The proposed Symmetric Even-Odd-buffer structure has the advantage that it can be applied to various canceling algorithms.

Convergence of the Filtered-x LMS Algorithm for Canceling Multiple Sinusoidal Acoustic Noise (복수정현파 소음제거를 위한 Filtered-x LMS 알고리듬의 수렴 특성에 관한 연구)

  • Lee, Kang-Seung;Lee, jae-Chon;Youn, Dae-Hee;Kang, Young-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.40-49
    • /
    • 1995
  • Application of the filtered-x LMS adaptive filter to active noise cancellation requires to estimate the transfer charactersitics between the output and the error signal of the adaptive canceler. In this paper, we derive the filtered-x adaptive noise cancellation algorithm and analyze its convergence behavior when the acoustic noise consists of multiple sinusoids. The results of the convergence analysis of the filtered-x LMS algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components : Phase estimation error and estimated gain. In particular, the convergence is shown to strongly affected by the accuracy of the phase response estimate. Simulation results are presented to support the theoretical convergence analysis.

  • PDF