• Title/Summary/Keyword: Active Noise Canceling

Search Result 17, Processing Time 0.021 seconds

Adaptive Active Noise Control of Single Sensor Method (단일 센서 방식의 적응 능동 소음제어)

  • 김영달;장석구
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.941-948
    • /
    • 2000
  • Active noise control is an approach to reduce the noise by utilizing a secondary noise source that destructively interferes with the unwanted noise. In general, active noise control systems rely on multiple sensors to measure the unwanted noise field and the effect of the cancellation. This paper develops an approach that utilizes a single sensor. The noise field is modeled as a stochastic process, and an adaptive algorithm is used to adaptively estimate the parameters of the process. Based on these parameter estimates, a canceling signal is generated. Oppenheim assumed that transfer function characteristics from the canceling source to the error sensor is only a propagation delay. This paper proposes a modified Oppenheim algorithm by considering transfer characteristics of speaker-path-sensor This transfer characteristics is adaptively cancelled by the proposed adaptive modeling technique. Feasibility of the proposed method is proved by computer simulations with artificially generated random noises and sine wave noise. The details of the proposed architecture. and theoretical simulation of the noise cancellation system for three dimension enclosure are presented in the Paper.

  • PDF

A Study on the Noise Reduction in Railway Vehicles using Bone Conduction Device : Railway noise analysis and Understanding Acoustic Characteristics of Bone Conduction Devices

  • Park, Hyung Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.48-53
    • /
    • 2016
  • Noise and vibration pollution is emerging to people in high speed trains. And it is difficult to realization of eco-friendly railway system at noise problem. The railway internal noise is 73dB on average and over 80dB in the loudest section. In order to reduce noise, there are passive methods that are far from noise sources and theother active noise reducion method. In this paper, we propose a method of reduce noise by measure and estimate the noise condition of train environment using Bone-Conduction device. We use an anti-phase waveform for canceling of noise characteristic. With this new system, the noise from surrounding environments can be reduced.

Study on Noise Performance Enhancement of Tunable Low Noise Amplifier Using CMOS Active Inductor (CMOS 능동 인덕터를 이용한 동조가능 저잡음 증폭기의 잡음성능 향상에 관한 연구)

  • Sung, Young-Kyu;Yoon, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.897-904
    • /
    • 2011
  • In this paper, a novel circuit topology of a low-noise amplifier tunable at 1.8GHz band for PCS and 2.4GHz band for WLAN using a CMOS active inductor is proposed. This circuit topology to reduce higher noise figure of the low noise amplifier with the CMOS active load is analyzed. Furthermore, the noise canceling technique is adopted to reduce more the noise figure. The noise figure of the proposed circuit topology is analyzed and simulated in $0.18{\mu}m$ CMOS process technology. Thus, the simulation results exhibit that the noise performance enhancement of the tunable low noise amplifier is about 3.4dB, which is mainly due to the proposed new circuit topology.

Single Channel Active Noise Control using Adaptive Model (적응모델을 이용한 단일채널 능동 소음제어)

  • Kim, Yeong-Dal;Lee, Min-Myeong;Jeong, Chang-Gyeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.442-450
    • /
    • 2000
  • Active noise control is an approach to noise reduction in which a secondary noise source that destructively interferes with the unwanted noise. In general, active noise control systems rely on multiple sensors to measure the unwanted noise field and the effect of the cancellation. This paper develops an approach that utilizes a single sensor. The noise field is modeled as a stochastic process, and a time-adaptive algorithm is used to adaptively estimate the parameters of the process. Based on these parameter estimates, a canceling signal is generated. Opppenheim model assumed that transfer function characteristics from the canceling source to the error sensor is only propagation delay. But this paper proposes a modified Oppenheim model by considering transfer characteristics of acoustic device and noise path. This transfer characteristics is adaptively cancelled by adaptive model. This is proved by computer simulation with artifically generated random noise and sine wave noise. The details of the proposed architecture, and theoretical simulation and experimental results of the noise cancellation system for three dimension enclosure are presented in the paper.

  • PDF

Efficacy of active noise-canceling headphones in patients undergoing ultrasonic scaling

  • Jeong-Woong Kim;Bo-Ah Lee;Yu-Seon Park;Jinho Chung;Seong-Ho Choi;Young-Taek Kim
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.4
    • /
    • pp.269-282
    • /
    • 2023
  • Purpose: Dental fear hinders patients from receiving appropriate dental treatment. In particular, the noise generated by high-speed air turbines and ultrasonic scalers can adversely affect patients. Many efforts have been made to reduce the discomfort caused by noise, but no methods are definitively recommended. The purpose of this study was to determine the efficacy of active noise-canceling (ANC) headphones in reducing the pain and discomfort associated with dental scaling. Methods: Fifty-five patients requiring scaling and root planing, aged ≥19 years and showing no auditory problems, were included. Scaling was performed for the bilateral maxillary molars and premolars while patients wore headphones, with ANC turned either on or off. The degree of noise and pain reduction in the on and off conditions were surveyed using a visual analog scale (VAS). The Wilcoxon signed-rank test was performed to compare noise-and pain-related discomfort with ANC turned on and off. Results: The sample included 28 men and 27 women with a mean age of 45.45±13.12 years. The average noise-related discomfort score was 3.84±2.12 and 2.95±1.99 when noise-canceling was turned off and on, respectively, with a statistically significant difference (P<0.05). Similarly, the average pain-related discomfort score was 3.78h±2.00 and 3.09±1.96 when noise-canceling was turned off and on, respectively, which was a statistically significant difference (P<0.05). Conclusions: The use of ANC headphones seems to reduce the discomfort caused by noise and pain in patients undergoing scaling.

Control Method and Application of PWM Inverter for Active Silencer (능동소음기를 위한 PWM 인버터의 제어기법 및 적용)

  • Lee, Seung-Yo;Choe, Gyu-Ha;Kang, Jung-Yu;Jang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.311-314
    • /
    • 1995
  • PWM(Pulse-Width Modulation) is frequently used as control method for inverter. In control of active silencer studied presently, PWM control method can be applied. This paper presents its possibility. As operating source of loudspeaker, inverter is used instead of audio amplifier and PWM controller controls the inverter to make canceling sound. This paper presents that active silencer of inverter-type using the PWM control method makes the canceling sound to acoustic noise and cancels the acoustic noise.

  • PDF

Active Noise Control of Induction Motor using Co-FXLMS Algorithm (Co-FXLMS 알고리즘을 이용한 유도전동기의 능동소음제어)

  • Kim, Young-Min;Nam, Hyun-Do;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, the active noise control experiment has been performed using induction motor noises. While the noises were measured, a induction motor was operated in different speed. For the simulation of ANC(Active Noise Control), test-bed is composed a multi-channel ANC system was constructed. In order to compare the control performance, we performed noise reduction simulations of ANC by Co-FXLMS algorithm and FXLMS algorithm. Through the simulation results, we confirmed that convergence performance and noise decrease effect of the proposed Co-FXLMS algorithm have been improved from existing FXLMS algorithm.

Feedback Active Noise Control Based Voice Enhancing Ear-Protection System

  • Moon, Seong-Pil;Chang, Tae-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1627-1633
    • /
    • 2017
  • This paper proposes a voice enhancing ear-protection system which is based on feedback active noise control(FBANC). The proposed system selectively suppresses the background noise and preserves the talking voice by controlling the adaptive algorithm with the voice activity period detection module. The noise reduction performance of the proposed noise canceling algorithm is analytically derived for the two key performance affecting parameters, i.e., electro-acoustic coupling distance and noise bandwidth. The proposed system is also implemented with a floating-point DSP system and its performance is experimentally tested to compare with the analytically derived results. The achieved levels of noise reduction for the three different noise bandwidths cases, i.e., 10Hz, 50Hz, and 90Hz, are high to show 17.05dB, 10.54dB and 8.99dB, respectively. The feasibility of the proposed system is also shown by the peak noise reduction achieved more than 25dB while preserving the voice component in the frequency range between 200-800Hz.

An Active Broadband Noise Control System based on the MuItiband-Structured Delayless Subband Adaptive Filter (광대역 소음 제어를 위한 시간 지연 없는 Multiband-Structured Subband Adaptive Filter 기반 능동 소음 제어)

  • Kim, Shin-Wook;Jeon, Hyeon-Jin;Park, Min-Woo;Lee, Woo-Gun;Chang, Tae-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.669-673
    • /
    • 2010
  • This paper proposes a new active noise control (ANC) system for canceling broadband noise. The proposed ANC system is designed based on the multiband-structured delayless subband adaptive filter (MDSAF), which has advantages of fast-convergence speed and higher noise reduction performance by eliminating the aliasing and band-edge effects caused by band-partitioning. The simulation results show that the proposed ANC system has faster convergence speed as compared to the conventional ANC systems and effectively reduces the wideband noise.

Characteristics of Real-time Implementation using the Advanced System Controller in ANC Systems (개선된 시스템 제어기를 사용한 능동소음제어의 실시간 구현 특성)

  • Moon, Hak-ryong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • Active noise control (ANC) is a method of cancelling a noise signal in an acoustic cavity by generating an appropriate anti-noise signal via canceling loudspeakers. The continuous progress of ANC involves the development of improved adaptive signal processing algorithms, transducers, and DSP hardware. In this paper, the convergence behavior and the stability of the FxLMS algorithm in ANC systems with real-time implementation is proposed. Specially, The advanced DSP H/W with dual core(DSP+ARM) and API(application programming interface) S/W programming was developed to improve the real-time implementation performance under the FxLMS algorithms of input noise such as road noise environment. The experimental results are found to be in good agreement with the theoretical predictions.