• Title/Summary/Keyword: Active Metal

Search Result 869, Processing Time 0.032 seconds

Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells (리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향)

  • Yun, Hongkwan;Kim, Dahee;Kim, Chunjoong;Kim, Young-Jin;Min, Ji Ho;Jung, Namgee
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

Single and mixed chelants-assisted phytoextraction of heavy metals in municipal waste dump soil by castor

  • Wuana, Raymond A.;Eneji, Ishaq S.;Naku, Julius U.
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.19-35
    • /
    • 2016
  • The phytoextraction of some toxic heavy metals from municipal waste dump soil by castor plant (Ricinus communis) was tested under natural and single or mixed chelant-assisted scenarios in pot microcosms. A sandy loam with total metal contents (mg/kg): Cd (84.5), Cu (114.5), Ni (70.3), Pb (57.8), and Zn (117.5), was sampled from an active dumpsite in Calabar, Nigeria and used for the study. Castor (small seed variety) was grown under natural phytoextraction or single/binary chelant (citric acid, oxalic acid, and EDTA) applications (5-20 mmol/kg soil) for 63 days. Castor exhibited no visual phytotoxic symptoms with typically sigmoid growth profiles at the applied chelant doses. Growth rates, however, decelerated with increase in chelant dose. Post-harvest biomass yields were higher under chelant application than for natural phytoextraction. Both root and shoot metal concentrations (mg/kg) increased quasilinearly and significantly ($p{\leq}0.05$) with increase in chelant dose, furnishing maximum levels as: Cd (55.6 and 20.9), Cu (89.5 and 58.4), Ni (49.8 and 19.6), Pb (32.1 and 12.1), and Zn (99.5 and 46.6). Ranges of translocation factors, root and shoot bioaccumulation factors were 0.21-3.49, 0.01-0.89 and 0.01-0.51, respectively. Overall, the binary chelant treatments were less toxic for R. communis growth and enhanced metal accumulation in shoots to a greater extent than the single chelant scenarios, but more so when EDTA was present in the binary combination. This suggests that the mixed chelants could be considered as alternative treatments for enhanced phytoextraction and revegetation of degraded waste dump soils.

Transition Metal Complexes Derived From 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide Synthesis, Structural Characterization, and Biological Activities

  • Alhakimi, Ahmed N.;Shakdofa, Mohamad M.E.;Saeed, S. El-Sayed;Shakdofa, Adel M.E.;Al-Fakeh, Maged S.;Abdu, Ashwaq M.;Alhagri, Ibrahim A.
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.93-105
    • /
    • 2021
  • Mononuclear Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Fe(III), Ru(III), and UO2(II) complexes of 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide (H2L) were prepared by direct method. The ligand and its complexes were isolated in solid state and characterized by analytical techniques such as elemental and thermal analyses, molar conductance, magnetic susceptibility measurements and spectroscopic techniques such as UV-Visible, IR, 1H-NMR and 13C-NMR. The spectral data indicated that the ligand acted as neutral/monobasic bidentate or monobasic/dibasic tridentate ligand bonded to the metal ions through the oxygen atom of ketonic or enolic carbonyl group, azomethine nitrogen atom and deprotonated/protonated phenolic oxygen atom forming either tetragonally distorted octahedral or octahedral. Antimicrobial activities of the ligand and its complexes were evaluated against Escherichia coli, Bacillus subtilis and Aspergillus niger by well diffusion method. The results of antifungal activity showed that the Fe(III) complex (10) exhibited higher antifungal against Aspergillus niger than the other complexes. However, the results of antibacterial activity revealed that Cu(II) complex (4) is the most active against Escherichia coli while the Cu(II) complex (5) and Fe(III) complex (10) exhibited higher antibacterial effect on Bacillus subtilis than the other complexes.

Electrochemical properties of AZ31, AZ61 magnesium alloy electrodes for eco-friendly Magnesium-air battery (친환경 마그네슘-공기 전지용 AZ31, AZ61 마그네슘 합금 전극의 전기화학적 특성)

  • Choi, Weon-Kyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.17-22
    • /
    • 2021
  • Eco-friendly magnesium-air battery is a kind of metal-air battery known as a primary battery with a very high theoretical discharge capacity. This battery is also called a metal-fuel cell from the viewpoint of using oxygen in the atmosphere as a cathode active material and magnesium alloy as a fuel. Since battery performance is determined by the properties of the magnesium alloy used as a anode, more research and development of the magnesium alloy electrode as a anode material are required in order to commercialize it as a high-performance battery. In this study, the commercialized magnesium alloys(AZ31, AZ61) were selected and then electrochemical measurements and discharge test were conducted. Electrochemical properties of magnesium alloys were investigated by OCP changes, Tafel parameters and CV measurement, and the feasibilities of AZ61 alloy with excellent discharge capacity(1410mAhg-1) as electrode materials were evaluated through CC discharge experiments.

Effect of promoter on platinum catalyst for oxidation of VOCs (VOCs 산화반응에서 Pt 촉매에 대한 조촉매의 영향)

  • Kim, Moon-Chan;Shin, Jin-Sil
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.422-432
    • /
    • 2006
  • The volatile organic compounds(VOCs) have been recognized as a major contributor to air pollution. The catalytic oxidation is one of the most important processes for VOCs destruction due to getting high efficiency at low temperature. In this study, monometallic Pt and bimetallic Pt-Ru, Pt-Ir were supported to ${\gamma}-Al_2O_3$. Xylene, toluene and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and were characterized by XRD, XPS, TEM and BET analysis. As a result, Pt-Ru, Pt-Ir bimetallic catalysts showed higher conversion than Pt monometallic catalyst. Pt-Ir bimetallic catalyst showed the highest conversion on the ${\gamma}-Al_2O_3$ support. In the VOCs oxidation, Pt-Ru, Pt-Ir bimetallic catalyst had multipoint active sites, so it improved the range of Pt metal state. Therefore, bimetallic catalysts showed higher conversion of VOCs than monometallic ones. In this study, the use of small amount of Ru, Ir to Pt promoted oxidation conversion of VOCs.

The Role of Organic Matter in Gold Occurrence: Insights from Western Mecsek Uranium Ore Deposit

  • Medet Junussov;Ferenc Madai;Janos Foldessy;Maria Hamor-Vido
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.371-386
    • /
    • 2024
  • This paper presents analytical insights regarding into the occurrence of gold within organic matter, which is hosted by solid bitumen and closely associated with uranium ores in the Late Permian Kővágószőllős Sandstone Formation in Western Mecsek, South-West Hungary. The study utilizes a range of analytical techniques, including X-ray powder diffraction (XRPD) and wavelength dispersive X-ray fluorescence (WD-XRF) for comprehensive mineralogical and elemental analysis; organic petrography and electron microprobe analysis for characterizing organic matter; and an organic elemental analyzer for identifying organic compounds. A three-step sequential extraction method was used to liberate gold from organic matter and sulfide minerals, employing KOH, HCl, and aqua regia, followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) to quantify gold contents. The organic matter is identified as comprising two vitrinite types (telinite V1 and reworked V2) and three solid bitumen forms: nonfluorescing (B1) and fluorescing (B2) fillings within the V1, as well as homogenous pyrobitumen (PB) occupying narrow cracks and voids within globular quartz. Despite the samples exhibiting low total organic carbon content (<1 wt%), they display high sulfur content (up to 6 wt%) and the sequentially extracted noble metal content from the organic matter is found to total 7.45 ppm gold. The research findings suggest that organic matter plays crucial roles in ore mineralization processes. Organic matter acts as an active component in the migration of gold, uranium, and hydrocarbons within sulfur-rich hydrothermal fluids. Additionally, organic matter contributes to the entrapment and enrichment of gold in hetero-atomic organic fractions, forming metal-organic compounds. Moreover, uranium inclusions are observed as oxide/phosphate minerals within solid bitumen and associated vitrinite particles. These insights into the occurrence and distribution of gold within organic matter highlight substantial exploration potential, guiding additional research activities focused on organic matter within the Kővágószőllős Sandstone Formation at the Western Mecsek deposit.

Novel Synthesis and Nanocharacterization of Graphene and Related 2D Nanomaterials Formed by Surface Segregation

  • Fujita, Daisuke
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.60-60
    • /
    • 2015
  • Nanosheets of graphene and related 2D materials have attracted much attention due to excellent physical, chemical and mechanical properties. Single-layer graphene (SLG) was first synthesized by Blakely et al in 1974 [1]. Following his achievements, we initiated the growth and characterization of graphene and h-BN on metal substrates using surface segregation and precipitation in 1980s [2,3]. There are three important steps for nanosheet growth; surface segregation of dopants, surface reaction for monolayer phase, and subsequent 3-D growth (surface precipitation). Surface phase transition was clearly demonstrated on C-doped Ni(111) by in situ XPS at elevated temperatures [4]. The growth mode was clarified by inelastic background analysis [5]. The surface segregation approach has been applied to C-doped Pt(111) and Pd(111), and controllable growth of SLG has been demonstrated successfully [6]. Recently we proposed a promising method for producing SLG fully covering an entire substrate using Ni films deposited on graphite substrates [7]. A universal method for layer counting has been proposed [8]. In this paper, we will focus on the effect of competitive surface-site occupation between carbon and other surface-active impurities on the graphene growth. It is known that S is a typical impurity of metals and the most surface-active element. The surface sites shall be occupied by S through surface segregation. In the case of Ni(110), it is confirmed by AES and STM that the available surface sites is nearly occupied by S with a centered $2{\times}2$ arrangement. When Ni(110) is doped with C, surface segregation of C may be interfered by surface active elements like S. In this case, nanoscopic characterization has discovered a preferred directional growth of SLG, exhibiting a square-like shape (Fig. 1). Also the detailed characterization methodologies for graphene and h-BN nanosheets, including AFM, STM, KPFM, AES, HIM and XPS shall be discussed.

  • PDF

Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals (은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징)

  • Huh, D.;Kim, D.H.;Chun, B.S.
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

Development and Evaluation of Impregnated Carbon Systems Against Iodine Vapours

  • Srivastava, Avanish Kumar;Saxena, Amit;Singh, Beer;Srivas, Suresh Kumar
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.274-279
    • /
    • 2007
  • In order to understand the breakthrough behaviour of iodine vapours on impregnated carbon systems, an active carbon, 80 CTC grade, $12{\times}30$ BSS particle size and $1104\;m^2/g$ surface area, was impregnated with metal salts such Cu, Cr, Ag, Mo and Zn, and an organic compound Triethylene diamine (TEDA) to prepare different carbon systems such as whetlerite, whetlerite/TEDA, whetlerite/KI/KOH and ASZMT. The prepared adsorbents along with active carbon were characterized for surface area and pore volume by $N_2$ adsorption at liquid nitrogen temperature. These carbon systems were compared for their CT (concentration X time) values at 12.73 to 53.05 cm/sec space velocities and 2 to 5 cm carbon column bed heights. The carbon column of 5.0 cm bed height and 1.0 cm diameter was found to be providing protection against iodine vapours up to 5.5 h at 3.712 mg/L iodine vapour concentration and 12.73 cm/sec space velocity. The study clearly indicated the adsorption capacities of carbon systems to be directly proportional to their surface area values. Dead layer with all the prepared carbon systems was found to be less than 2.0 cm indicating it to be minimum bed height to have protection against $I_2$ vapours. Effect of carbon bed height and flow rate was also studied. The active carbon showed maximum protection at all bed heights and flow rates in comparison to all other impregnated carbon systems, showing that only physical adsorption is responsible for the removal of iodine vapours.

Target Classification of Active Sonar Returns based on Convolutional Neural Network (컨볼루션 신경망 기반의 능동소나 표적 식별)

  • Kim, Jeong-Hun;Choi, Dae-Sung;Lee, Hyung-Soo;Lee, Jung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1909-1916
    • /
    • 2017
  • Recently, deep learning algorithms have good performance in various fields, but they are not actively applied to sonar systems. In this study, we carried out experiments to classify active sonar returns into a metal object such as a mine and a rock using a convolutional neural network which is one of the deep learning algorithms. Data augmentation is applied on this paper to avoid overfitting and increase performance. And we analyzed performance variation depending on hyperparameter value and change of the number of training data through data augmentation. The experiments are performed with two training data; an aspect-angle independent and an aspect-angle dependent. As a result, the performances are 88.9% and 94.9% in aspect-angle independent and dependent, respectively. These are up to 4.5% point higher than the performance obtained by applying artificial neural network and support vector machine algorithm in the previous study.