• Title/Summary/Keyword: Active Metal

Search Result 860, Processing Time 0.025 seconds

A study on the Fracture Mechanical Strength Evaluation in Joint Interface of Ceramics and Metal (세라믹스/금속 접합계면에서의 파괴력학적 강도평가에 관한 연구)

  • 최병기
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.20-24
    • /
    • 1996
  • Indentation fracture method and 4-point bending test are carried out to measure the residual stresses and the bending strength, and to investigate the mechanism of fracture mechanics in the bonded interface of ceramic and metal. The results obtained are as follows ; 1) The fracture patterns of bonded materials shows that the delamlnatlon fracture of Interfaces is stablely developed from the interfaces of ceramic/active metallic bonded materials at the specimen center, and the fracture is unstablely generated through a refraction on the middle ceramic. 2) Distribution of residual stresses is quantitatively investigated on the ceramic side of bonded materials. 3) It Is found that the residual stresses of interface vertical direction are concentrated on the bonded interface at the ceramic side.

  • PDF

Antioxidative Action of Enzymatic Hydrolysates of Mackerel Muscle Protein (고등어 근육단백질 효소 가수분해물의 항산화 작용)

  • 염동민;김영숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.2
    • /
    • pp.128-136
    • /
    • 1994
  • Mackerel muscle protein hydrolysates, which were prepared from defatted mackerel meal by proteases such as complex enzyme, alcalase, bromelain, pancrease, pepsin, w-chymotrypsin, trypsin and papain, were tested for the antioxidative action against linoleic acid. Among proteases tested, the hydrolysates obtained from the treatment of complex enzyme, bromelain and alcalase showed higher antioxidative effects. Also, the hydrolysates showed the synergistic effects with o-tocopherol and the inhibitory effects for peroxidation of metal ions(Fe3+, Cua+) From the profiles of fractionation of the hydrolysates with Bio-gel P-2 column, the most active fractions, part I(complex enzyme-derived) and part e(bromelain-derived), had below MW 1,400 and the antioxidative effects were closely related to the binding capacity with metal ion(Cua+). Amno acid composition of the part I was abundant in histidine, arginine, phenylalanine and lysine, and the part e was abundant in lysine, glutamic acid and leucine.

  • PDF

High Temperature Oxidation of Ti-15Mo-5Zr-3Al Alloy (Ti-15Mo-5Zr-3Al 합금의 고온산화)

  • 우지호;김종성;백종현;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.278-285
    • /
    • 1998
  • Alloys of Ti-15Mo-5Zr-3Al(wt%) were oxidized in air between 700 and $900^{\circ}C$. It was found that the oxidation resistance is much better than that of either commercially available pure Ti-6Al-4V(wt%) alloys. The oxide scales were primarily composed of thick Ti-ox-ides which were formed by the inward diffusion of oxygen from the atmosphere. At higher temperatures a thin $\alpha$-$Al_2O_3$ layer was formed on Ti-oxides owing to the outward diffusion of Al from the base alloys. Molybdenum, the noblest metal among the alloy components, was predominantly present behind the oxide-substrate interface. Zirconium, an oxygen active metal, was present at both the oxide layer and the substrate.

  • PDF

Study on the Corrosionproofing in Concrete by Cathodic Protection (전위변화에 의한 콘크리트내의 철근방식에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.213-220
    • /
    • 1999
  • The purpose of this study is to apply cathodic protection to reinforced concrete structure and provide fundamental data to prevent the corrosion. The theory of cathodic protection of steel in concrete is to apply sufficient direct current so that corroding anodes on the steel are prevented from discharging ions. Two methods are used to supply the external current. In one, the protected metal is the cathode by connecting it to a more active metal. In the second, an external direct current power source supplies the current. The first is the sacrificial-anode system and the second the impressed-current system. The study results showed that the corrosion of the reinforcing steel in concrete could be enormously decreased by using protective current. The sacrificial anode and concrete nave to be adhered closely each in order to prevent the corrosion of reinforcing steel.

  • PDF

UV Light Induced Photocatalytic Degradation of Cyanides in Aqueous Solution over Modified $TiO_2$

  • Kim, Hyeong Ju;Kim, Jae Hyeon;Lee, Cheong Hak;Hyeon, Taek Hwan;Choe, Won Yong;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1371-1374
    • /
    • 2001
  • Metal doping was adopted to modify TiO2 (P-25) and enhance the photocatalytic degradation of harmful cyanides in aqueous solution. Ni, Cu, Co, and Ag doped TiO2 were found to be active photocatalysts for UV light induced degradation of aqueous cyanides generating cyanate, nitrate and ammonia as main nitrogen-containing products. The photoactivity of Ni doped TiO2 was greatly affected by the state of Ni, that is, the crystal size and the degree of reduction of Ni. The modification effects of some mixed oxides, that is, Ni-Cu/TiO2 were also studied. The activity of Ni-Cu/TiO2 for any ratio of Cu/Ni was higher than that of Ni- or Cu-doped TiO2, and the catalyst at the Cu/Ni ratio of 0.3 showed the highest activity for cyanide conversion.

Memristive Devices Based on RGO Nano-sheet Nanocomposites with an Embedded GQD Layer (저결함 그래핀 양자점 구조를 갖는 RGO 나노 복합체 기반의 저항성 메모리 특성)

  • Kim, Yongwoo;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.54-58
    • /
    • 2021
  • The RGO with controllable oxygen functional groups is a novel material as the active layer of resistive switching memory through a reduction process. We designed a nanoscale conductive channel induced by local oxygen ion diffusion in an Au / RGO+GQD / Al resistive switching memory structure. A strong electric field was locally generated around the Al metal channel generated in BIL, and the local formation of a direct conductive low-dimensional channel in the complex RGO graphene quantum dot region was confirmed. The resistive memory design of the complex RGO graphene quantum dot structure can be applied as an effective structure for charge transport, and it has been shown that the resistive switching mechanism based on the movement of oxygen and metal ions is a fundamental alternative to understanding and application of next-generation intelligent semiconductor systems.

Recent Progress of Light-Stimulated Synapse and Neuromorphic Devices (광 시냅스 및 뉴로모픽 소자 기술)

  • Song, Seungho;Kim, Jeehoon;Kim, Yong-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.215-222
    • /
    • 2022
  • Artificial neuromorphic devices are considered the key component in realizing energy-efficient and brain-inspired computing systems. For the artificial neuromorphic devices, various material candidates and device architectures have been reported, including two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskite materials. In addition to conventional electrical neuromorphic devices, optoelectronic neuromorphic devices, which operate under a light stimulus, have received significant interest due to their potential advantages such as low power consumption, parallel processing, and high bandwidth. This article reviews the recent progress in optoelectronic neuromorphic devices using various active materials such as two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskites

The Study of nc-ZnO/ZnO Field-effect Transistors Fabricated by Spray-pyrolysis Process (스프레이 공정을 이용한 nc-ZnO/ZnO 전계효과트랜지스터 제작 및 특성 분석)

  • Cho, Junhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.22-25
    • /
    • 2022
  • Metal oxide semiconductor (MOS) based on spray-pyrolysis deposition technique has attracted large attention due to simple and low-cost processibility while preserving their intrinsic optical and electrical characteristics. However, their high process temperature limits practical applications. Here, we demonstrated the nc-ZnO/ZnO field-effect transistors (FETs) via spray-pyrolysis as incorporating ZnO nanocrystalline nanoparticles into typical ZnO precursor. The nc-ZnO/ZnO FETs exhibit good quality of electrical properties. Our experiments reveal that nc-ZnO in active layer enhance electrical characteristics.

The Instability Behaviors of Spray-pyrolysis Processed nc-ZnO/ZnO Field-effect Transistors Under Illumination (스프레이 공정을 이용한 nc-ZnO/ZnO 전계효과트랜지스터의 광학적 노출에 대한 열화 현상 분석)

  • Junhee Cho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.78-82
    • /
    • 2023
  • Metal oxide semiconductor (MOS) adapting spray-pyrolysis deposition technique has drawn large attention based on their high quality of intrinsic and electrical properties in addition to simple and low-cost processibility. To fully utilize the merits of MOS field-effect transistors (FETs) , transparency, it is important to understand the instability behaviors of FETs under illumination. Here, we studied the photo-induced properties of nc-ZnO/ZnO field-effect transistors (FETs) based on spray-pyrolysis under illumination which incorporating ZnO nanocrystalline nanoparticles into typical ZnO precursor. Our experiments reveal that nc-ZnO in active layer suppressed the light instabilities of FETs.

  • PDF

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety (수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구)

  • Jang, Young hee;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2021
  • In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.