• 제목/요약/키워드: Active Metal

검색결과 859건 처리시간 0.022초

Monoamine Oxidase의 억제 기구 (Mechanism of the Monoamine Oxidase Inhibition)

  • 강건일
    • 약학회지
    • /
    • 제27권4호
    • /
    • pp.321-329
    • /
    • 1983
  • The review characterized active site(s) of MAO with respect to metal ions, hydrophobic and polar region, sulfhydryl group and flavin moiety. The mechanism of inhibition was dealt with three representative types of inhibitors; phenylcyclopropylamines, acetylenic amines, and hydrazines. Multiple forms of MAO was shortly described in relation to their selective inhibition. 84 reference were cited.

  • PDF

3차원 절삭에서 표면환경이 절삭기구에 미치는 영향 (The Effect of Surface Environment on the Mechanism in Oblique Cutting)

  • 서남섭
    • 한국정밀공학회지
    • /
    • 제1권2호
    • /
    • pp.24-32
    • /
    • 1984
  • The object of the study is to discuss the effect of magic ink as a surface active substance on the mechanism of chip formation in oblique cutting. The Rehbinder effect has been known as a phenomenon that the mechanical strength reduces when the metal is coated with some surface active substances. In order to interpret these surface effects defined by Rehbinder, the influence on the shear strength of shear plane by coating surface active substances, cutting force by the depth of cut, surface roughness and hardness ratio were observed. The results are as follows: 1. By coating the magic ink on free surface of the forming chip, the effective shear angle increases, and the cuttinbg force and the deformed chip thickness decreases. 2. With the large inclination angle the effective shear angle increases, and the specific cutting force and the friction angle decrease. 3. Cutting of the coated surface improves the surface roughness and the hardness ratio drops, which means another Rehbinder effect.

  • PDF

유동층 전극반응기를 이용한 중금속폐수의 처리에 관한 연구 1. 전류공급원에서의 국부물질전달계수의 분포 (Treatment of Heavy Metal Wastewater Bed Electrode Reactor by a Fluidized 1. Distribution of Local Mass Transfer Coefficients on the Current Feeder)

  • 황영기;정은혁
    • 한국환경과학회지
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 1997
  • Varing the flow velocity of solution and particle diameter, the mass transfer coefficient of the local electrode on current feeder has been measured in an empty flow reactor, an inert fluidized bed electrode reactor, and an active fluidized bed electrode reactor. It had its maximium value when the bed porosity was 0.6 to 0.65 and decreased with in- creasing the height of local electrode. The mass transfer coefficient was found to be high especially when higher particle was fluidized. Electrochemical deposition of copper dissolved in the synthesized wastewater has been performed in the active fluidized bed electrode reactor. The deduction rate was higher than 90% and the residual concentration of copper decreased to less than 5ppm.

  • PDF

Threshold Voltage Properties of OFET with CuPc Active Material

  • Lee, Ho-Shik;Kim, Seong-Geol
    • Journal of information and communication convergence engineering
    • /
    • 제13권4호
    • /
    • pp.257-263
    • /
    • 2015
  • In this study, organic field-effect transistors (OFETs) using a copper phthalocyanine (CuPc) material as an active layer and SiO2 as a gate insulator were fabricated with varying active layer thicknesses and channel lengths. Further, using a thermal evaporation method in a high-vacuum system, we fabricated a CuPc FET device of the top-contact type and used Au materials for the source and drain electrodes. In order to discuss the channel formation and FET characteristics, we observed the typical current-voltage characteristics and calculated the threshold voltage of the CuPc FET device. We also found that the capacitance reached approximately 97 pF at a negative applied voltage and increased upon the accumulation of carriers at the interface of the metal and the CuPc material. We observed the typical behavior of a FET when used as an n-channel FET. Moreover, we calculated the threshold voltage to be about 15-20 V at VDS = -80 V.

Ammonia decomposition over titanium carbides

  • Choi, Jeong-Gil
    • 한국결정성장학회지
    • /
    • 제22권6호
    • /
    • pp.269-273
    • /
    • 2012
  • Ammonia decomposition over titanium carbides were investigated using eight different samples which have been synthesized by TPR (temperature-programmed reduction) method of titanium oxide ($TiO_2$) with pure $CH_4$. The resulting materials which were synthesized using wo different heating rates and space velocity exhibited the different surface areas. These results indicated that the structural properties of these materials have been related to heating rates and space velocity employed. The titanium carbides prepared in this study proved to be active for ammonia decomposition, and the activity changed with the particle size/surface area. These showed the relationship between ammonia decomposition activity and the different active species. Compared to molybdenum carbide, the titanium carbides were one order of magnitude less active, suggesting the correlation between the activity difference and the degree of electron transfer between metals and carbon in metal carbides.

Phytoremediation of Heavy-Metal-Contaminated Soil in a Reclaimed Dredging Area Using Alnus Species

  • Lee, Deok-Beom;Nam, Woong;Kwak, Young-Se;Cho, Nam-Hoon;Lee, Sang-Suk
    • Journal of Ecology and Environment
    • /
    • 제32권4호
    • /
    • pp.267-275
    • /
    • 2009
  • To investigate the possible applications of plants to remediate heavy-metal-contaminated soil, a pilot experiment was performed for four years in a reclaimed dredging area using two Alnus species, i.e., Alnus firma and Alnus hirsuta. In a comparison of phytomass of the two species at two different planting densities, the phytomass of Alnus planted at low density was twice as high as that of Alnus planted at high density after four years. The Alnus species showed active acclimation to the heavy-metal-contaminated soil in a reclaimed dredging area. A. hirsuta showed greater accumulation of phytomass than A. firma, indicating that it is the better candidate for the phytoremediation of heavy-metal-contaminated soils. In the pilot system, Alnus plants took metals up from the soil in the following order; Pb > Zn > Cu > Cr > As > Cd. Uptake rates of heavy metals per individual phytomass was higher for Alnus spp. planted at low density than those planted at high density in the pilot system. Low plant density resulted in higher heavy metal uptake per plant, but the total heavy metal concentration was not different for plants planted at low and high density, suggesting that the plant density effect might not be important with regard to total uptake by plants. The quantity of leached heavy metals below ground was far in excess of that taken up by plants, indicating that an alternative measurement is required for the removal of heavy metals that have leached into ground water and deeper soil. We conclude that Alnus species are potential candidates for phytoremediation of heavy-metal- contaminated surface soil in a reclaimed dredging area.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

수직하중에 의한 응력이 CMP 공정의 디싱에 미치는 영향 (Investigation of the Relationship Between Dishing and Mechanical Stress During CMP Process )

  • 김형구;김승현;김민우;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.30-34
    • /
    • 2023
  • Since dishing in the CMP process is a major factor that hinders the uniformity of the semiconductor thin film, many studies have focused this issue to improve the non-uniformity of the film due to dishing. In the metal layer, the dishing mainly occurs in the central part of the metal due to a difference in a selection ratio between the metal and the dielectric, thereby generating a step on the surface of the metal layer. Factors that cause dishing include the shape of the thin film, the chemical reaction of the slurry, thermal deformation, and the rotational speed of the pad and head, and dishing occurs due to complex interactions between them. This study analyzed the stress generated on the metal layer surface in the CMP process using ANSYS software, a commercial structure analysis program. The stress caused by the vertical load applied from the pad was analyzed by changing the area density and line width of the dummy metal. As a result of the analysis, the stress in the active region decreased as the pattern density and line width of the dummy metal increased, and it was verified that it was valid compared with the previous study that studied the dishing according to the dummy pattern density and line width of the metal layer. In conclusion, it was confirmed that there is a relationship between dishing and normal stress.

  • PDF