• Title/Summary/Keyword: Active Matrix Displays

Search Result 95, Processing Time 0.03 seconds

Commercialization of Microencapsulated Electrophoretic Displays

  • McCreary, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.524-524
    • /
    • 2006
  • For decades, the pursuit of volume commercialization of low-power reflective displays with a paper-like look has been an unfulfilled dream. While steady technical progress was made throughout the late 1990s, there were still no volume products incorporating electronic paper displays (EPD) on the market. Now, microencapsulated electrophoretic display technology, also called electronic ink, has moved into volume production with a frontplane laminate (FPL) display component called E Ink Imaging Film™. This film is coated roll to roll on a flexible plastic substrate and integrated into a display module. Today, all-plastic segmented displays are being shipped as well as displays with electronic ink FPL being driven by glass TFT backplanes. A roadmap to active matrix flexible electrophoretic displays is being enabled by rapid technical progress on flexible TFT backplanes by a variety companies. Each of the approaches to these backplanes and flexible active matrix displays has different advantages for the various market segments being pursued including large format flexible displays for e-news and other reader applications, rollable displays for compact readers, and high resolution small format displays up to 400 ppi that can have fully integrated drive electronics to reduce size and drive down costs. Backplane approaches include Si on plastic, organic transistors on plastic, and Si transistors on flexible stainless steel substrate. Progress is also being made on next generation inks, including more reflective inks with higher contrast ratios. A full color 6 inch, 170 pixel per inch (PPI) active matrix display using a newer generation ink has been developed and this will be described and demonstrated. Large format segmented flexible displays will also be described.

  • PDF

Recent advances in excimer-laser-based crystallization for active-matrix displays

  • Turk, Brandon A.;Herbst, Ludolf;Simon, Frank;Paetzel, Rainer
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.12-15
    • /
    • 2007
  • Excimer-laser-based crystallization is ideallysuited for forming crystalline Si films on glass substrates for use in active-matrix displays. In this paper, we will report on recent and significant technical advances in light sources and beam delivery systems targeted at enabling ultra-uniform mura-free low-temperature polycrystalline silicon active-matrix backplanes while simultaneously lowering production costs and increasing throughput.

  • PDF

Next-generation active-matrix polymer OLED displays

  • Vaart, N.C. Van Der;Meulenkamp, E.A.;Young, N.D.;Fleuster, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.337-342
    • /
    • 2004
  • Since 1992, Philips has been developing polymer OLEDs resulting in a first commercial monochrome display just 10 years later. Philips is now focusing on the technology development required to mass-produce full-color polymer OLDE displays, based on passive and active-matrix addressing. High precision inkjet printing has been chosen as the deposition technology for the OLED material. In this paper, we give an overview of the activities of Philips in the area of mobile OLED applications and explore the route towards large screen OLED television.

  • PDF

Suftla Flexible Active-Matrix Electrophoretic Displays

  • Miyasaka, Mitsutoshi;Nebashi, Satoshi;Shimoda, Tatsuya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.466-469
    • /
    • 2006
  • We have developed the world's thinnest flexible electrophoretic displays (EPDs). The thin-film displays are 95 ..m thick, which is nearly the same thickness as a standard sheet of paper. Weighing 0.44g including external connection cables, these displays are also probably the world's lightest. We have also developed 7.1-inch-diagonal(paperback-sized) high-resolution flexible EPDs. The displays are large enough to be used as practical e-paper. More than 7 million transistors work correctly on plastic, enabling us to see 3-megapixel images. These flexible displays include active-matrix TFT devices that are fabricated using Suftla transfer technology. Suftla technology demonstrates the potential to achieve thin, flexible displays that will be used as an e-paper in the near future.

  • PDF

Printed Active-Matrix Displays

  • Burns, S.E.;Kuhn, C.;Jacobs, K.;Ramsdale, C.;Arias, A.C.;Watts, J.;Etchells, M.;Chalmers, K.;Devine, P.;Murton, N.;Norval, S.;King, J.;Mills, J.;Sirringhaus, H.;Friend, R.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.227-229
    • /
    • 2003
  • We present a process for printing active matrix displays. In this process, transistors are fabricated using soluble semi-conducting and conducting materials. Accurate definition of the transistor channel and other circuit components is achieved by direct inkjet printing combined with surface energy patterning. We present results on our 4,800 pixel, 50 dpi, active matrix displays.

  • PDF

Nanotechnologies in Displays : TFTs with Carbon Nanotubes and Semiconductor Nanowires.

  • Pribat, Didier;Cojocaru, Costel;Gowtham, M.;Eude, L.;Balan, A.;Bondavalli, P.;Legagneux, P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1245-1248
    • /
    • 2007
  • We propose new approaches to thin film transistor fabrication that use carbon nanotubes and semiconductor nanowires as active elements. These nanomaterials which are essentially studied in the context of the post CMOS era will certainly impact the active matrix display industry in the near future.

  • PDF

Full Color Top Emission AMOLED Displays on Flexible Metal Foil

  • Hack, Michael;Hewitt, Richard;Urbanik, Ken;Chwang, Anna;Brown, Julie J.;Lu, Jeng Ping;Shih, Chinwen;Ho, Jackson;Street, Bob;Ramos, Teresa;Rutherford, Nicole;Tognoni, Keith;Anderson, Bob;Huffman, Dave
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. For portable applications flexible (or conformable) and rugged displays will be the future. In this paper we outline our progress towards developing such a low power consumption active-matrix flexible OLED $(FOLED^{TM})$ display. We demonstrate full color 100 ppi QVGA active matrix OLED displays on flexible stainless steel substrates. Our work in this area is focused on integrating three critical enabling technologies. The first technology component is based on UDC's high efficiency long-lived phosphorescent OLED $(PHOLED^{TM})$ device technology, which has now been commercially demonstrated as meeting the low power consumption performance requirements for mobile display applications. Secondly, is the development of flexible active-matrix backplanes, and for this our team are employing PARC's Excimer Laser Annealed (ELA) poly-Si TFTs formed on metal foil substrates as this approach represents an attractive alternative to fabricating poly-Si TFTs on plastic for the realization of first generation flexible active matrix OLED displays. Unlike most plastics, metal foil substrates can withstand a large thermal load and do not require a moisture and oxygen permeation barrier. Thirdly, the key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing, and in this device we employ a multilayer thin film Barix encapsulation technology in collaboration with Vitex systems. Drive electronics and mechanical packaging are provided by L3 Displays.

  • PDF

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF

Liquid Crystal Materials and Technologies inside Modern Displays

  • Naemura, Shohei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.277-282
    • /
    • 2003
  • Computational calculations are now successfully introduced to design liquid crystal molecules for uses in modern active-matrix displays. These material technologies are practically applied to develop novel compounds, enabling formulation of advanced liquid crystal mixtures together with a newly developed mixture purification method. Typical examples of these liquid crystal mixtures are introduced for modern displays in various applications.

  • PDF

A p-channel LTPS active matrix process for OLED displays using a compensation circuit with three TFTs

  • Persidis, Efstathios;Baur, Holger;Pieralisi, Fabio;Fruehauf, Norbert;Marx, Thilo;Weitbruch, Sebastien;Schemmann, Heinrich;Roy, Philippe Le;Birnstock, Jan;Stubinger, Thomas;Vehse, Martin;Hofmann, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.403-408
    • /
    • 2006
  • We have developed a four mask LTPS TFT p-channel process and fabricated active matrix backplanes based on a pixel circuit with three TFTs and one storage capacitor. Top emitting AMOLED displays have been produced to prove the working principle of the active matrix.

  • PDF