• Title/Summary/Keyword: Active Mass Damper

Search Result 164, Processing Time 0.024 seconds

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

A semi-active smart tuned mass damper for drive shaft

  • Cai, Q.C.;Park, J.H.;Lee, C.H.;Park, J.L.;Yoon, D.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.349-354
    • /
    • 2011
  • Tuned mass damper is widely used in many applications of industry. The main advantage of tuned mass damper is that it can increase the damping ratio of system and reduce the vibration amplitude. Meanwhile, the natural frequency of system will be divided by two peaks, and the peak speeds are closely related to the mass and the stiffness of auxiliary mass system added. In addition, the damping ratio will also affect the peak frequency of the dynamic response. In the present research, the nonlinear mechanical characteristics of rubber is investigated and put into use, since it is usually manufactured as the spring element of tuned mass damper. By the sense of the nonlinear stiffness as well as the damping ratio which can be changed by preload applied on, the shape memory alloy is proposed to control the auxiliary mass system by self-optimizing. Supported by the experiment data of rubber, the 1 DOF theoretical model and finite element model based on computer simulation are implemented to perform the feasibility of the proposed semi-active tuned mass damper working on the drive shaft.

  • PDF

Active Vibration Control of Structure Using Active Tuned Mass Damper and Modified PPF Controller (능동동조질량감쇠기와 수정 PPF 제어기를 이용한 구조물의 능동진동제어)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.550-555
    • /
    • 2007
  • This paper is concerned with the active vibration control of building structure by means of the active tuned mass damper and the modified positive position feedback controller. To this end, one-degree-of-freedom spring-mass-damper system equipped with ATMD is considered. The stability condition for the addressed system when applying the proposed PPF controller is derived by Routh-Hurwitz stability criterion. The stability condition shows that the modified PPF controller is absolutely stable if the controller gain is positive, so that the modified PPF controller can be used without difficulty. Theoretical study shows that the modified PPF controller can effectively suppress vibrations as the original PPF controller does in smart structure applications. To investigate the validity of the modified PPF controller, a simple experimental structure with an ATMD system driven by DC motor was built. The modified PPF control algorithm was implemented on Atmel 128 microcontroller. The experimental result shows that the modified PPF controller can also suppress vibrations for the real structure.

  • PDF

Active Vibration Control of Structure Using Active Tuned Mass Damper and Modified PPF Controller (능동동조질량감쇠기와 수정 PPF 제어기를 이용한 구조물의 능동진동제어)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.224-230
    • /
    • 2008
  • This paper is concerned with the active vibration control of building structure by means of the active tuned mass damper and the modified positive position feedback controller. To this end, one-degree-of-freedom spring-mass-damper system equipped with ATMD is considered. The stability condition for the addressed system when applying the proposed PPF controller is derived by Routh-Hurwitz stability criterion. The stability condition shows that the modified PPF controller is absolutely stable if the controller gain is positive. so that the modified PPF controller can be used without difficulty. Theoretical study shows that the modified PPF controller can effectively suppress vibrations as the original PPF controller does in smart structure applications. To investigate the validity of the modified PPF controller, a simple experimental structure with an ATMD system driven by DC motor was built. The modified PPF control algorithm was implemented on Atmel 128 microcontroller. The experimental result shows that the modified PPF controller can also suppress vibrations for the real structure.

The Application of Resettable Device to Semi-Active Tuned Mass Damper Building Systems for Multi-level Seismic Hazard Mitigation

  • Chey, Min-Ho
    • Architectural research
    • /
    • v.14 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • An innovative multi-story Semi-Active Tuned Mass Damper (SATMD) building system is proposed to control seismic response of existing structures. The application of adding new stories as large tuned mass and semi-active (SA) resettable actuators as central features of the control scheme is derived. For the effective control of the structures, the optimal tuning parameters are considered for the large mass ratio, for which a previously proposed equation is used and the practical optimal stiffness is allocated to the actuator stiffness and rubber bearing stiffness. A two-degree-of freedom (2-DOF) model is adopted to verify the principal efficiency of the suggested structural control concept. The simulations for this study utilizes the three ground motions, from SAC project, having probability of exceedance of 50% in 50 years, 10% in 50 years, and 2% in 50 years for the Los Angeles region. 12-story moment resisting frames, which are modified as '12+2' and '12+4' story structures, are investigated to assess the viability and effectiveness of the system that aims to reduce the response of the buildings to earthquakes. The control ability of the SATMD scheme is compared to that of an uncontrolled and an ideal Passive Tuned Mass Damper (PTMD) building system. From the performance results of suggested '12+2' and '12+4' story retrofitting case studies, SATMD systems shows significant promise for application of structural control where extra stories might be added.

FxLMS Algorithm for Active Vibration Control of Structure By Using Inertial Damper with Displacement Constraint (관성형 능동 댐퍼를 이용한 구조물 진동 제어에서 댐퍼 질량의 변위 제한을 고려한 FxLMS 알고리즘)

  • Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.545-557
    • /
    • 2021
  • Engine is the main source of vibration that generates unwanted noise and vibration of vehicle chassis. Especially, in submarine applications, radiation of noise signatures can be detected at some distance away from the submarine using a sonar array. Thus quiet operation is crucial for submarine's survivability. This study addresses reduction of the force transmissibility originating from engines and transmitted to hull through engine mounts. An inertial damper, as an actuator of hybrid mount system, is addressed to reduce even further the level of vibration. Narrow band FxLMS algorithms are broadly used to cancel the vibration of engine mount because of its excellent performance of canceling narrow band noise. However, in real active dampers, the maximum displacement of damper mass is kinematically restricted. When the control input signal from the FxLMS algorithm exceeds this limitation, the damper mass will collide with the mechanical stops and results in many problems. Originated from these, a modified narrow band FxLMS algorithm based on the equalizer technique with the maximum allowable displacement of active damper mass is proposed in this study. Some simulation results showed that the propose algorithm is effective to suppress vibration of engine mount while ensuring given displacement constraint.

Performance Investigation of Semi-Active Damper Considering Mass Modeling of Functional Fluid (작동유체 질량을 고려한 유연우주트러스구조물 제진용 반능동 댐퍼의 성능분석)

  • Oh, Hyun-Ung;Choi, Young-Jun;Lee, Kyong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.450-456
    • /
    • 2009
  • Semi-active vibration control is one of the attractive control methods for space application due to its robustness as passive damping system and much higher damping performance than passive system. In this paper, performance investigation of semi-active damper considering a mass modeling of functional fluid inside of the damper has been performed. Numerical investigation results confirmed that the damper model considering the fluid mass is effective for vibration suppression performance at a relatively low viscosity range of functional fluid. Based on the analysis results, design method to enhance the performance of semi-active damper has been proposed.

A study on the Application of Electromagnetic Type HMD for Vibration Control of Structure (구조물 진동제어를 위한 전자석구동 HMD의 응용에 관한 연구)

  • Choi, Hyun;Jeoung, Jeoung-Kyo;Kim, Doo-Hoon;Lee, Sang-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.280-285
    • /
    • 2000
  • With recent development of technology of high stiffness material and the structural design, the construction of high rise structures such as tall building, tower has increased. The more flexible and slender structure is vulnerable to the internal and external dynamic loads induced by earthquake, wind and traffic load. There have been great effort and many researches to minimize the influence of dynamic loads on the structure. The traditional and stable method, the application of the passive damper, is not able to comply with various dynamic loads, while the mass damper which active control technology is integrated can effectively comply with load types. Therefore, the application of active control of huge structures with AMD(Active mass damper) or HMD(Hybrid Mass damper) is increasing. Up to now, most of actuators are servomotor and hydraulic actuator. But it is known that the electromagnetic actuator applies non contacting control force, which makes the control system easier with no characteristic change depending on time. In this paper, Hybrid mass damper with electromagnetic actuator was designed and applied to building scaled structure. The performance of designed HMD tested by shake table test is included.

  • PDF

Experimental and numerical study on the dynamic behavior of a semi-active impact damper

  • Zheng Lu;Mengyao Zhou;Jiawei Zhang;Zhikuang Huang;Sami F. Masri
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.455-467
    • /
    • 2023
  • Impact damper is a passive damping system that controls undesirable vibration with mass block impacting with stops fixed to the excited structure, introducing momentum exchange and energy dissipation. However, harmful momentum exchange may occur in the random excitation increasing structural response. Based on the mechanism of impact damping system, a semi-active impact damper (SAID) with controllable impact timing as well as a semi-active control strategy is proposed to enhance the seismic performance of engineering structures in this paper. Comparative experimental studies were conducted to investigate the damping performances of the passive impact damper and SAID. The extreme working conditions for SAID were also discussed and approaches to enhance the damping effect under high-intensity excitations were proposed. A numerical simulation model of SAID attached to a frame structure was established to further explore the damping mechanism. The experimental and numerical results show that the SAID has better control effect than the traditional passive impact damper and can effectively broaden the damping frequency band. The parametric studies illustrate the mass ratio and impact damping ratio of SAID can significantly influence the vibration control effect by affecting the impact force.

Development of Linear Magnetic Actuator for Active Vibration Control (능동진동제어를 위한 선형 자기 액추에이터 개발)

  • Lee, Haeng-Woo;Kwak, Moon-K.;Kim, Ki-Young;Lee, Han-Dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.667-672
    • /
    • 2009
  • This paper is concerned with the development of linear magnetic actuator for active vibration control. The newly developed linear magnetic actuator consists of permanent magnets and copper coils. On the contrary to the voice-coil type actuator, the linear magnetic actuator utilizes magnetic flux to generate the shaft movement. In this study, experiments on the prototype linear magnetic actuator were carried out to investigate its dynamic characteristics. Block and inertia forces generated by the actuator were measured. The experimental results show that the actuator can be used as both actuator and active tuned-mass damper. The linear magnetic actuator was attached to a cantilever as the active-tuned mass damper and active vibration control experiment was carried out. The experimental results show that the newly developed linear magnetic actuator can be effectively used for the active vibration control of structures.