• Title/Summary/Keyword: Active Magnetic Bearing Spindle

Search Result 22, Processing Time 0.02 seconds

Analysis and Design of Diaphragm-type Air Braking System for Train (철도차량의 막판식 공기제동시스템의 해석 및 설계)

  • 노진환;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.605-608
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and ed nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50,000 rpm.

  • PDF

New Design of Cylindrical Capacitive Sensor for On-line Precision Control of AMB Spindles (자기베어링의 실시간 정밀제어를 위한 원통형 정전용량 변위센서의 새로운 설계)

  • Jeon, Soo;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.548-553
    • /
    • 2000
  • A new design of cylindrical capacitive sensor(CCS) for the displacement measurement of precision active magnetic bearing(AMB) spindle is presented in this paper. This research is motivated by the problem that existing 4-segment CCS is still sensitive to the $3^{rd}$ harmonic component of the geometric errors of a rotor. The procedure of designing new CCS starts from the modeling and error analysis of CCS. The angular size of CCS is set up as a design parameter, and new 8-segment CCS is introduced to possess an arbitrary angular size. The optimum geometry of CCS to minimize the effect of geometric errors is determined through minimum norm approach. Experimental results with test rotors have confirmed the improvement in geometric error suppression.

  • PDF