• 제목/요약/키워드: Active Clamp

검색결과 194건 처리시간 0.024초

Mechanism of $Ca^{2+}$ -activated $Cl^-$ Channel Activation by Ginsenosides in Xenopus Oocytes

  • Park, Seok;Jung, Se-Yeon;Park, Seong-Hwan;Ko, Sung-Ryong;Hyewon Rhim;Park, Chul-Seung;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제24권4호
    • /
    • pp.168-175
    • /
    • 2000
  • Xenopus oocytes를 이용하여 인삼의 유효 성분으로 알려진 Ginseng total saponin(GTS)의 신호 전달 기작을 two electrode voltage clamp 방법을 이용하여 연구하였다. GTS는 세포 바깥에 처리했을 때 -2OmV보다 더 positive한 voltage에서 커다란 outward current를 유도하였다. 그러나, 세포 안쪽에 GTS를 injection할 경우 아무런 효과가 없는 것으로 나타났다. GTS처리에 의한 outward current유발 효과는 GTS 투여 용량에 의존적인 것으로 나타났다(EC$_{50}$ : 4.4 $\mu\textrm{g}$/ml). GTS의 작용은 $Ca^{2+}$-activated Cl- channel blocker인 niflumic acid에 의하여 차단되었다. 칼슘 chelator인 BAPIA와 IP$_3$ 수용체 길항제인 heparin을 세포내 injection에 의하여 차단되었다. 또한 active phospholipase C inhibitor(PLC)인U-73122를 세포 바깥에 전처리할 경우에도 GTS의 작용이 부분적으로 억제되는 것으로 나타났다. 백일해 독소를 전처리할 경우GTS의 작용은 억제되지 않은 것으로 나타났으나, GTP analog인 GTP${\gamma}$S를 세포내 injection할 경우 GTS의 작용은 억제되는 것으로 나타났다. 이러한 연구 결과는 GTS가 oocytes세포막 성분과 상호 작용에 의하여 $Ca^{2+}$-activated Cl- channel이 열리도록 하고, 이 과정에 PLC활성 및 백일해 독소에 민감하지 않은 G단백질활성 및 IP3에 민감한 세포내 $Ca^{2+}$-activated로부터 칼슘 방출을 유도하는 것으로 나타났다났다

  • PDF

Decreased inward rectifier and voltage-gated K+ currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats

  • Kim, Sung Eun;Yin, Ming Zhe;Kim, Hae Jin;Vorn, Rany;Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권1호
    • /
    • pp.111-119
    • /
    • 2020
  • In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.

Inhibitory Effects of Ginsenoside Metabolites, Compound K and Protopanaxatriol, on $GABA_C$ Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Hwang, Sung-Hee;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Joon-Hee;Lee, Sang-Mok;Ahn, Yun Gyong;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권2호
    • /
    • pp.127-132
    • /
    • 2013
  • Ginsenosides, one of the active ingredients of Panax ginseng, show various pharmacological and physiological effects, and they are converted into compound K (CK) or protopanaxatriol (M4) by intestinal microorganisms. CK is a metabolite derived from protopanaxadiol (PD) ginsenosides, whereas M4 is a metabolite derived from protopanaxatriol (PT) ginsenosides. The ${\gamma}$-aminobutyric acid $receptor_C$ ($GABA_C$) is primarily expressed in retinal bipolar cells and several regions of the brain. However, little is known of the effects of ginsenoside metabolites on $GABA_C$ receptor channel activity. In the present study, we examined the effects of CK and M4 on the activity of human recombinant $GABA_C$ receptor (${\rho}$ 1) channels expressed in Xenopus oocytes by using a 2-electrode voltage clamp technique. In oocytes expressing $GABA_C$ receptor cRNA, we found that CK or M4 alone had no effect in oocytes. However, co-application of either CK or M4 with GABA inhibited the GABA-induced inward peak current ($I_{GABA}$). Interestingly, pre-application of M4 inhibited $I_{GABA}$ more potently than CK in a dose- dependent and reversible manner. The half-inhibitory concentration ($IC_{50}$) values of CK and M4 were $52.1{\pm}2.3$ and $45.7{\pm}3.9{\mu}M$, respectively. Inhibition of $I_{GABA}$ by CK and M4 was voltage-independent and non-competitive. This study implies that ginsenoside metabolites may regulate $GABA_C$ receptor channel activity in the brain, including in the eyes.

Effects of Ginsenosides and Their Metabolites on Voltage-dependent Ca2+ Channel Subtypes

  • Lee, Jun-Ho;Jeong, Sang Min;Kim, Jong-Hoon;Lee, Byung-Hwan;Yoon, In-Soo;Lee, Joon-Hee;Choi, Sun-Hye;Lee, Sang-Mok;Park, Yong-Sun;Lee, Jung-Ha;Kim, Sung Soo;Kim, Hyoung-Chun;Lee, Boo-Yong;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.52-62
    • /
    • 2006
  • In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent $Ca^{2+}$ channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned $Ca^{2+}$ channel subtypes such as ${\alpha}_{1C}$(L)-, ${\alpha}_{1B}$(N)-, ${\alpha}_{1A}$(P/Q)-, ${\alpha}_{1E}$(R)- and ${\alpha}_{1G}$(T) have not been identified. Here, we used the two-microelectrode voltage clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on $Ba^{2+}$ currents ($I_{Ba}$) in Xenopus oocytes expressing five different $Ca^{2+}$ channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the ${\alpha}_{1G}$-type. Of the various ginsenosides, $Rb_1$, Rc, Re, Rf, $Rg_1$, $Rg_3$, and $Rh_2$, ginsenoside $Rg_3$ also inhibited all five channel subtypes and ginsenoside $Rh_2$ had most effect on the ${\alpha}_{1C}$- and ${\alpha}_{1E}$-type $Ca^{2+}$ channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the ${\alpha}_{1G}$-type of $Ca^{2+}$ channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. $Rg_3$, $Rh_2$, and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the ${\alpha}_{1B}$- and ${\alpha}_{1A}$-types. These results reveal that $Rg_3$, $Rh_2$ and CK are the major inhibitors of $Ca^{2+}$ channels in Panax ginseng, and that they show some $Ca^{2+}$ channel selectivity.