• Title/Summary/Keyword: Activation Tagging

Search Result 21, Processing Time 0.027 seconds

Identification of Novel Salt Stress-responsive Genes Using the Activation Tagging System in Arabidopsis (애기장대에서 activation tagging system을 이용한 새로운 고염 스트레스 반응 유전자의 동정)

  • Seok, Hye-Yeon;Nguyen, Linh Vu;Bae, Hyoungjoon;Ha, Jimin;Kim, Ha Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1030-1041
    • /
    • 2018
  • Abiotic stresses limit the growth and productivity of plants. Cellular adaptation to abiotic stresses requires coordinated regulation in gene expression directed by complex mechanisms. This study used the activation tagging system to identify novel salt stress-responsive genes. The study selected 9 activation tagging lines that showed salt stress-tolerant phenotypes during their germination stages. Thermal asymmetric interlaced-PCR (TAIL-PCR) was used to identify the T-DNA tagging sites on the Arabidopsis genome in selected activation tagging lines, including AT7508, AT7512, AT7527, AT7544, AT7548, and AT7556. RT-PCR analysis showed that ClpC2/HSP93-III (At3g48870), plant thionin family (At2g20605), anti-muellerian hormone type-2 receptor (At3g50685), vacuolar iron transporter family protein (At4g27870), and microtubule-associated protein (At5g16730) were activated in AT7508, AT7512, AT7527, AT7544, and AT7556, respectively. Interestingly, in AT7548, both the genes adjacent to the T-DNA insertion site were activated: Arabinogalactan protein 13 (AGP13) (At4g26320) and F-box/RNI-like/FBD-like domains-containing protein (At4g26340). All of the seven genes were newly identified as salt stress-responsive genes from this study. Among them, the expression of ClpC2/HSP93-III, AGP13, F-box/RNI-like/FBD-like domains-containing protein gene, and microtubule-associated protein gene were increased under salt-stress condition. In addition, AT7508, AT7527, and AT7544 were more tolerant to salt stress than wild type at seedling development stage, functionally validating the screening results of the activation tagging lines. Taken together, our results demonstrate that the activation tagging system is useful for identifying novel stress-responsive genes.

KRDD: Korean Rice Ds-tagging Lines Database for Rice (Oryza sativa L. Dongjin)

  • Kim, Chang-Kug;Lee, Myung-Chul;Ahn, Byung-Ohg;Yun, Doh-Won;Yoon, Ung-Han;Suh, Seok-Cheol;Eun, Moo-Young;Hahn, Jang-Ho
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.64-67
    • /
    • 2008
  • The Korean Rice Ds-tagging lines Database (KRDD) is designed to provide information about Ac/Ds insertion lines and activation tagging lines using japonica rice. This database has provided information on 18,158 Ds lines, which includes the ID, description, photo image, sequence information, and gene characteristics. The KRDD is visualized using a web-based graphical view, and anonymous users can query and browse the data using the search function. It has four major menus of web pages: (i) a Blast Search menu of a mutant line; Blast from rice Ds-tagging mutant lines; (ii) a primer design tool to identify genotypes of Ds insertion lines; (iii) a Phenotype menu for Ds lines, searching by identification name and phenotype characteristics; and (iv) a Management menu for Ds lines.

Mass Production of Gain-of-Function Mutants of Hair Roots in Ginseng (기능획득 돌연변이 인삼 모상근의 대량생산)

  • Ko, Suk-Min;In, Dong-Soo;Chung, Hwa-Jee;Choi, Dong-Woog;Liu, Jang-Ryol
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.285-291
    • /
    • 2007
  • This study describes conditions for the mass production of activation-tagged mutant hairy root lines of ginseng by cocultivation with Agrobacterium rhizogenes. Because it is not currently possible to produce progeny from transgenic ginseng, a loss-of-function approach for functional genomics cannot be appliable to this species. A gain-of-function approach is alternatively the choice and hairy root production by cocultivation of A. rhizogenes would be most practical to obtain a large number of mutants. Various sources of explants were subjected to genetic transformation with various strains of A. rhizogenes harboring the activation-tagging vector pKH01 to determine optimum conditions for the highest frequency of hairy root formation on explants. Petiole explants cocultivated with A. rhizogenes R1000 produced hairy roots at a frequency of 85.9% after 4 weeks of culture. Conditions for maximum growth or branching rate of hairy roots were also investigated by using various culture media. Petiole explants cultured on half strength Schenk and Hildebrandt medium produced vigorously growing branched roots at a rate of 2.6 after 4 weeks of culture. A total of 1,989 lines of hairy root mutants were established in this study. These hairy root lines will be useful to determine functions of genes for biosynthesis of ginsenosides.

Mass production and application of activation tagged hairy root lines for functional genomic of secondary metabolism in ginseng

  • Choi, Dong-Woog;Chung, Hwa-Jee;Ko, Suk-Min;In, Dong-Soo;Song, Ji-Sook;Woo, Sung-Sick;Liu, Jang R.
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.294-300
    • /
    • 2009
  • Activation tagging that uses T-DNA vectors containing multimerized transcriptional enhancers from the cauliflower mosaic virus (CaMV) 35S gene is a powerful tool to determine gene function in plants. This approach has been successfully applied in screening various types of mutations and cloning the corresponding genes. We generated an activation tagged hairy root pool of ginseng (Panax ginseng C.A. Meyer) in an attempt to isolate genes involved in the biosynthetic pathway of ginsenoside (triterpene saponin), which is known as the major active ingredient of the root. Quantitative and qualitative variation of ginsenoside in activation tagged hairy root lines were profiled using LC/MS. Metabolic profiling data enabled selection of a specific hairy root line which accumulated ginsenoside at a higher level than other lines. The relative expression level of several genes of triterpene biosynthetic pathway in the selected hairy root line was determined by real time RT-PCR. Overall results suggest that the activation tagged ginseng hairy root system described in this study would be useful in isolating genes involved in a complex metabolic pathway from genetically intractable plant species by metabolic profiling.