• Title/Summary/Keyword: Activating protein-1

Search Result 318, Processing Time 0.029 seconds

The Tobacco Ubiquitin-activating Enzymes NtE1A and NtE1B Are Induced by Tobacco Mosaic Virus, Wounding and Stress Hormones

  • Takizawa, Mari;Goto, Akiko;Watanabe, Yuichiro
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.228-231
    • /
    • 2005
  • Recent characterization of several genes involved in plant defense responses suggested that ubiquitin-mediated protein degradation has a role in these responses. We isolated two cDNAs (NtUBA1 and NtUBA2) encoding ubiquitin-activating enzyme (E1) from Nicotiana tabacum cv. BY-2. The open reading frames of both encoded 1080 amino acids, corresponding to molecular masses of 120 kDa. The E1s and corresponding transcripts were upregulated by infection with tobacco mosaic virus (TMV) and tomato mosaic virus (ToMV), and to a lesser extent by cucumber mosaic virus (CMV). Furthermore, they were also upregulated by wounding stress, and the plant hormones salicylic acid, jasmonic acid and the ethylene precursor, aminocyclopropane-1-carboxylic acid (ACC). Our findings support the idea that the ubiquitin-proteasome system plays a role in plant disease defenses.

CD Gene Microarray Profiles of Bambusae Caulis in Liquamen in Human Mast Cell

  • Jeon Hoon;Kang Nan Joo;Kim Gyo Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.241-246
    • /
    • 2003
  • Bambusae Caulis in Liquamen(BCL) has been used to relieve the cough and asthma, and remove the phlegm in traditional Oriental medicine. In recent years, it was studied for its antiinflammatory, antiallergenic, immune-modulating, and anticarcinogenic capabilities. This experiment was performed to evaluate the microarray profiles of CD genes in human mast cells before and after BCL treatment. The results are as follows: The expression of 51 of the genes studied was up-regulated in the Bel-treated group; they include the genes coding L apoferritin, beta-2-microglobulin, ferritin light polypeptide, CD63, monocyte chemotactic and activating fact, heme oxygenase 1, CD140a, integrin alpha M, colony stimulating factor 2 receptor, eukaryotic translation elongation factor, CD37, interleukin 18, NADH dehydrogenase 1 beta, CD48, 5-lipoxygenase activating protein, interleukin 4, ribosomal protein L5, GABA(A) receptor-associated protein, beta-tubulin, integrin beta 1, CD162, CD32, lymphotoxin beta, alpha-tublin, integrin alpha L, CD2, CD151, CD331, 90 kDa heat shock protein, CD59, CD3Z, microsomal glutathione S-transferase 2, CD33, CD162R, cyclophilinA, CD84, interleukin 9 receptor, interleukin 11, CD117, CD39-Like 2, and so forth. The expression of 7 of the genes studied was down-regulated in the BCL-treated group; they include the genes coding con, CD238, SCF, CD160, CD231, CD24, and CD130. Consequently, the treatment of BCL on the human mast cells increased the expression of 51 genes and decreased the expression of 7 genes. These data would provide a fundamental basis to the traditional applications of Bambusae Caulis in Liquamen.

Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway

  • Tao, Fulin;Zhou, Yuanyuan;Wang, Mengwen;Wang, Chongyang;Zhu, Wentao;Han, Zhili;Sun, Nianxia;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.95-111
    • /
    • 2022
  • Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.

RGS Proteins and Opioid Signaling (Regulator of G-protein Signaling (RGS) 단백질과 아편 신호 전달)

  • Kim, Kyung Seon;Palmer, Pamela Pierce;Kim, Ki Jun
    • The Korean Journal of Pain
    • /
    • v.19 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The regulators of the G protein signaling (RGS) proteins are responsible for the rapid acceleration of the GTPase-activity intrinsic to the heterotrimeric G protein alpha subunits. As GTPase-activating proteins (GAP), the RGS proteins negatively regulate the G-protein signals. Recently, the RGS proteins are known to be one of the important regulators of opioid signal transduction and the development of tolerance. The aim of this study was to review the recent discovery and understanding of the role of RGS proteins in opioid signaling and the development of tolerance. This information will be useful for medical personnel, particularly those involved in anesthesia and pain medicine, by helping them improve the effective use of opioids and develop new drugs that can prevent opioid tolerance.

p38 mitogen-activated protein kinase contributes to TNFα-induced endothelial tube formation of bone-marrow-derived mesenchymal stem cells by activating the JAK/STAT/TIE2 signaling axis

  • Sukjin Ou;Tae Yoon Kim;Euitaek Jung;Soon Young Shin
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.238-243
    • /
    • 2024
  • Bone marrow-derived mesenchymal stem cells (BM-MSCs) can differentiate into endothelial cells in an inflammatory microenvironment. However, the regulatory mechanisms underlying this process are not entirely understood. Here, we found that TIE2 in BM-MSCs was upregulated at the transcriptional level after stimulation with tumor necrosis factor-alpha (TNFα), a major pro-inflammatory cytokine. Additionally, the STAT-binding sequence within the proximal region of TIE2 was necessary for TNFα-induced TIE2 promoter activation. TIE2 and STAT3 knockdown reduced TNFα-induced endothelial tube formation in BM-MSCs. Among the major TNFα-activated MAP kinases (ERK1/2, JNK1/2, and p38 MAPK) in BM-MSCs, only inhibition of the p38 kinase abrogated TNFα-induced TIE2 upregulation by inhibiting the JAK-STAT signaling pathway. These findings suggest that p38 MAP contributes to the endothelial differentiation of BM-MSCs by activating the JAK-STAT-TIE2 signaling axis in the inflammatory microenvironment.

Cilostazol Inhibits Vascular Smooth Muscle Cell Proliferation and Reactive Oxygen Species Production through Activation of AMP-activated Protein Kinase Induced by Heme Oxygenase-1

  • Kim, Jung-Eun;Sung, Jin-Young;Woo, Chang-Hoon;Kang, Young-Jin;Lee, Kwang-Youn;Kim, Hee-Sun;Kwun, Woo-Hyung;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.203-210
    • /
    • 2011
  • Cilostazol is a selective inhibitor of phosphodiesterase 3 that increases intracellular cAMP levels and activates protein kinase A, thereby inhibiting vascular smooth muscle cell (VSMC) proliferation. We investigated whether AMP-activated protein kinase (AMPK) activation induced by heme oxygenase-1 (HO-1) is a mediator of the beneficial effects of cilostazol and whether cilostazol may prevent cell proliferation and reactive oxygen species (ROS) production by activating AMPK in VSMC. In the present study, we investigated VSMC with various concentrations of cilostazol. Treatment with cilostazol increased HO-1 expression and phosphorylation of AMPK in a dose- and time-dependent manner. Cilostazol also significantly decreased platelet-derived growth factor (PDGF)-induced VSMC proliferation and ROS production by activating AMPK induced by HO-1. Pharmacological and genetic inhibition of HO-1 and AMPK blocked the cilostazol-induced inhibition of cell proliferation and ROS production.These data suggest that cilostazol-induced HO-1 expression and AMPK activation might attenuate PDGF-induced VSMC proliferation and ROS production.

Chemical composition and Stabilities of Invertase from Korean Ginseng, Panax ginseng (고려인삼(Panax RiwenR) Invertase의 화학조성과 안정성)

  • 김용환;김병묵
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 1990
  • The chemical composition and stabilities of the purified ginseng invertase were investigated. The purified enzyme was found to be a glycoprotein composed of 80.2% protein and 19.7% total sugar. The protein component of the enzyme was composed of acidic amino acid (9.3%), basic amino acid (48.9%), nonpolar amino acid (21.4%), polar amino acid (20.4%) and 6.1% S-containing amino acid. It showed especially high contents of histidine and serine. The enzyme was inactivated almost completely by the treatment with some proteases (papain, pepsin. trypsin, pancreatin and microbial alkaline pretense) and protein denatllrants (8M urea and 6M guanidine-HC1), bolt not with glyrosidase (${\alpha}$-amylase, ${\beta}$-amylase. glcoamylese and cellullase). btonosaccharides sllch as glilrose, fructose, galactose and mannose did not exert any influence on the enzyme activity. The activity of the enzyme was inhibited by Ag+, Mn2+, Hg2+, Zn2+ and Al3+, whereas Ca2+, Mg2+, Ba2+ and Fe3+ gave rather activating effects on the enzyme activity. The enzyme was relatively stable in the VH range of VH 6 and 8, and at the temperatures below 35$^{\circ}C$.

  • PDF

Effects of Curcumin, the Active Ingredient of Turmeric(Curcuma longa), on Regulation of Glutamate-induced Toxicity and Activation of the Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in HT22 Neuronal Cell

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • Glutamate causes neurotoxicity through formation of reactive oxygen species and activation of mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase-1 (MKP-1) is one of the phosphatases responsible for dephosphorylation/deactivation of three MAPK families: the extracellular signal-regulated kinase-1/2 (ERK-1/2), the c-Jun N-terminal kinase-1/2 (JNK-1/2), and the p38 MAPK. In this report, the potential involvement of MKP-1 in neuroprotective effects of curcumin, the active ingredient of turmeric (Curcuma longa), was examined using HT22 cells. Glutamate caused cell death and activation of ERK-1/2 but not p38 MAPK or JNK-1/2. Blockage of ERK-1/2 by its inhibitor protected HT22 cells against glutamate-induced toxicity. Curcumin attenuated glutamate-induced cell death and ERK-1/2 activation. Interestingly, curcumin induced MKP-1 activation. In HT22 cells transiently transfected with small interfering RNA against MKP-1, curcumin failed to inhibit glutamate-induced ERK-1/2 activation and to protect HT22 cells from glutamate-induced toxicity. These results suggest that curcumin can attenuate glutamate-induced neurotoxicity by activating MKP-1 which acts as the negative regulator of ERK-1/2. This novel pathway may contribute to and explain at least one of the neuroprotective actions of curcumin.

Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages

  • Bae, Young-An;Cheon, Hyae Gyeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.415-424
    • /
    • 2016
  • Berberine is an isoquinoline alkaloid found in Rhizoma coptidis, and elicits anti-inflammatory effects through diverse mechanisms. Based on previous reports that activating transcription factor-3 (ATF-3) acts as a negative regulator of LPS signaling, the authors investigated the possible involvement of ATF-3 in the anti-inflammatory effects of berberine. It was found berberine concentration-dependently induced the expressions of ATF-3 at the mRNA and protein levels and concomitantly suppressed the LPS-induced productions of proinflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$). In addition, ATF-3 knockdown abolished the inhibitory effects of berberine on LPS-induced proinflammatory cytokine production, and prevented the berberine-induced suppression of MAPK phosphorylation, but had little effect on AMPK phosphorylation. On the other hand, the effects of berberine, that is, ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation, were prevented by AMPK knockdown, suggesting ATF-3 induction occurs downstream of AMPK activation. The in vivo administration of berberine to mice with LPS-induced endotoxemia increased ATF-3 expression and AMPK phosphorylation in spleen and lung tissues, and concomitantly reduced the plasma and tissue levels of proinflammatory cytokines. These results suggest berberine has an anti-inflammatory effect on macrophages and that this effect is attributable, at least in part, to pathways involving AMPK activation and ATF-3 induction.

TLR4 Mediates Pneumolysin-Induced ATF3 Expression through the JNK/p38 Pathway in Streptococcus pneumoniae-Infected RAW 264.7 Cells

  • Nguyen, Cuong Thach;Kim, Eun-Hye;Luong, Truc Thanh;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.58-64
    • /
    • 2015
  • Activating transcription factor-3 (ATF3) acts as a negative regulator of cytokine production during Gram-negative bacterial infection. A recent study reported that ATF3 provides protection from Streptococcus pneumoniae infection by activating cytokines. However, the mechanism by which S. pneumoniae induces ATF3 after infection is still unknown. In this study, we show that ATF3 was upregulated via Toll-like receptor (TLR) pathways in response to S. pneumoniae infection in vitro. Induction was mediated by TLR4 and TLR2, which are in the TLR family. The expression of ATF3 was induced by pneumolysin (PLY), a potent pneumococcal virulence factor, via the TLR4 pathway. Furthermore, ATF3 induction is mediated by p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Thus, this study reveals a potential role of PLY in modulating ATF3 expression, which is required for the regulation of immune responses against pneumococcal infection in macrophages.