• Title/Summary/Keyword: Activated material

Search Result 741, Processing Time 0.023 seconds

Determination of Triacetin Contents in the Activated Carbon Filter (탄소복합필터의 triacetin 함량 분석)

  • Kim Soo-Ho;Ko Dongkyun;Kim Chung Ryul;Lee Dong-Wook;Shin Chang-Ho;Kim Jong-Yeol
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.68-74
    • /
    • 2005
  • Glycerol triacetate(triacetin) is the currently used common plasticizer in the making filters from cellulose acetate tow. For the mono acetate filter, the determination of triacetin contents is already established by CORESTA recommended method (No. 59). But unfortunately, the analytical method of triacetin in the activated carbon filter have not reported so far. In this study, it was established the analytical method of carbon filter's triacetin contents at various extraction conditions, bath ratio and internal standard materials. The confidential level appeared above $95\%$ when the extraction time, ISTD material and bath ratio was 3 hours, tripropionin and below 500 mg activated carbon / 50 $m\ell$ ethanol, respectively. Also, in the distribution of triacetin with filter materials in activated carbon filters, the triacetin amount was the most contained in activated carbon. Therefore, this method can be applied to the determination of triacetin contents in the activated carbon filter.

Nitrate Removal by $FeCl_3$-Treated Activated Carbon (염화철 처리 활성탄에 의한 질산염 제거)

  • 정경훈;최형일;정오진
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.63-68
    • /
    • 2001
  • A laboratory experiment was performed to invstigate the nitrate removal using FeCl$_3$ -treated activated carbon. Iron chloride(III) was coated onto the surface of activated carbon. The removal efficiency of nitrate was increased with increasing of FeCl$_3$ was used for coating material. About 22~26mg of Fe per unit g of activated carbon was adsorbed. The nitrate removal was not affected by the pH under the experiment range of pH, but the pH value in solution decrease to 3.5~4.0 after reaction. The removal efficiency of nitrate was increased with increasing of dosage of adsorbents. Ammonia was not detected and the Fe concentration as low as 0.22mg/$\ell$ was desorbed from the adsorbents. The adsorbents was regenerated using KCl solution, and recovery was 76.6% at 1 M of KCl. The adsorption of nitrate by FeCl$_3$-treated activated carbon followed the Freundlich isotherm equation and the Freundlich constant, 1/n, was 0.346. These results showed that the FeCl$_3$-treated activated carbon could serve as the basis of a useful nitrate removal.

  • PDF

Quality Comparison of Activated Carbon Produced From Oil Palm Fronds by Chemical Activation Using Sodium Carbonate versus Sodium Chloride

  • MAULINA, Seri;HANDIKA, Gewa;Irvan, Irvan;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.503-512
    • /
    • 2020
  • Using Na2CO3 versus NaCl as chemical activator, we compared the quality of activated carbon produced from oil palm fronds as raw material. These activators were selected for comparison because both are readily available and are environmentally friendly. In the manufacturing, we used Indonesian National Standard (SNI 06-3730-1995) parameters. For the quality comparison, we determined activated-carbon yield, moisture, ash, volatiles, and fixed-carbon contents; and adsorption capacity of iodine. The best characteristics, assessed by morphological surface analysis and Fourier transform infrared (FTIR) spectral analysis, were observed in the carbon activated by Na2CO3 at an activator concentration of 10% and carbonization temperature of 400 ℃. The results were as follows: activated-carbon yield, 84%; water content, 8.80%; ash content, 2.20%; volatiles content, 14.80%; fixed-carbon content, 68.60%; and adsorption capacity of iodine, 888.51 mg/g. Identification using the FTIR spectrophotometer showed the presence of the functional groups O-H, C=O, C=C, C-C, and C-H in the Na2CO3-activated carbon.

Fabrication of Ultra Fine β-phase Ti-Nb-Sn-HA Composite by Pulse Current Activated Sintering

  • Woo, Kee-Do;Wang, Xiaopeng;Kang, Duck-Soo;Kim, Sang-Hyuk;Woo, Jeong-Nam;Park, Sang-Hoon;Liuc, Zhiguang
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.443-448
    • /
    • 2010
  • The $\beta$ phase Ti-Nb-Sn-HA bio materials were successfully fabricated by high energy mechanical milling and pulse current activated sintering (PCAS). Ti-6Al-4V ELI alloy has been widely used as biomaterial. But the Al has been inducing Alzheimer disease and V is classified as toxic element. In this study, ultra fine sized Ti-Nb-Sn-HA powder was produced by high energy mechanical milling machine. The $\beta$ phase Ti-Nb-Sn-HA powders were obtained after 12hr milling from $\alpha$ phase. And ultra fine grain sized Ti-Nb-Sn-HA composites could be fabricated using PCAS without grain growth. After sintering, the microstructures and phase-transformation of Ti-Nb-Sn-HA biomaterials were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The relative density was obtained by Archimedes principle and the hardness was measured by Vickers hardness tester. The $\beta$-Ti phase was obtained after 12h milling. As result of hardness and relative density, 12h milled Ti-Nb-Sn-HA composite has the highest values.

Development of Anti-red Tide Material by Activating Red-mud (적토의 활성화를 통한 적조구제물질 개발에 대한 연구)

  • Chae Soo-Chun;Jang Young-Nam;Bae In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.267-276
    • /
    • 2005
  • The study is to determine the feasibility of activated red mud as an anti-red tide material. The red mud, a byproduct of Bayer process for the production of alumina from bauxite, contained hematite, boehmite, calcite, sodalite, quartz, zircon, anatase and an unknown phase. In the adsorption study of the red mud, its adsorption efficiencies for heavy elements were close to $100\%$ except $92\%$ In As. These results seem to be attributed by the high adsorption ability of iron oxides for heavy elements. As a result of leaching tests with the red mud at various pHs (pH $1\∼13$), the high leaching efficiencies for As, Cu and Zn at low pHs (at acidic condition) were obtained. It indicated that removal efficiency of heavy elements could be excellent in acidic treatment of red mud. The activated red mud, red mud reacted with acid, contained hematite, boehmite and so on, and desorption of heavy metals from the activated red mud increased with increasing temperature. The grain of the activated red mud was tens nm in size. The removal efficiency for 5 types of plankton was generally in inverse proportion to pH, especially to final pH. Of five plankton types, Prorocentrum minimum and Alexandrium tamarense promptly were removed more than $90\%$ as soon as the activated red mud was sprayed and $100\%$ after 30 minutes. These results indicated that the activated red mud seems to be a promising anti-red tide material.

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.

Nitrogen and Fluorine Co-doped Activated Carbon for Supercapacitors

  • Kim, Juyeon;Chun, Jinyoung;Kim, Sang-Gil;Ahn, Hyojun;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.338-343
    • /
    • 2017
  • Activated carbon has lower electrical conductivity and reliability than other carbonaceous materials because of the oxygen functional groups that form during the activation process. This problem can be overcome by doping the material with heteroatoms to reduce the number of oxygen functional groups. In the present study, N, F co-doped activated carbon (AC-NF) was successfully prepared by a microwave-assisted hydrothermal method, utilizing commercial activated carbon (AC-R) as the precursor and ammonium tetrafluoroborate as the single source for the co-doping of N and F. AC-NF showed improved electrical conductivity ($3.8\;S\;cm^{-1}$) with N and F contents of 0.6 and 0.1 at%, respectively. The introduction of N and F improved the performance of the pertinent supercapacitor: AC-NF exhibited an improved rate capability at current densities of $0.5-50mA\;cm^{-2}$. The rate capability was higher compared to that of raw activated carbon because N and F codoping increased the electrical conductivity of AC-NF. The developed method for the co-doping of N and F using a single source is cost-effective and yields AC-NF with excellent electrochemical properties; thus, it has promising applications in the commercialization of energy storage devices.

Removal Efficiency of the Pollutants from Piggery Wastes with Activated Carbon Treated with Metal and Their Pilot Scale Design

  • Oh, Won-Chun;Park, Chong-Sung;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.180-187
    • /
    • 2006
  • The treatment of piggery wastes was carried out at pilot scale using a multilayered metal-activated carbon system followed by carbon bed filtration. The physicochemical properties were obtained from treated samples with aqueous solutions containing metallic ions such as $Ag^+$, $Cu^{2+}$, $Na^+$, $K^+$ and $Mn^{2+}$, which main obsevations are subjected to inspect surface properties, color removal properties by Uv/Vis and EDX. Multilayered metal-activated carbons were contacted with waste water to investigation of the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. The removal results for the piggery waste using multilayered metal-activated carbon bed was achieved the satisfactory removal performance under permitted values of Ministry of Environment of Korea. The high efficiency of the multilayered metal-activated carbon bed was determined by the performance of this material for trapping, catalytic effect and adsorption of organic solid particles.

  • PDF

Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance

  • Lee, Dayoung;Jung, Jin-Young;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.192-197
    • /
    • 2014
  • A hierarchical pore structured novolac-type phenol based-activated carbon with micropores and mesopores was fabricated. Physical activation using a sacrificial silicon dioxide ($SiO_2$) template and chemical activation using potassium hydroxide (KOH) were employed to prepare these materials. The morphology of the well-developed pore structure was characterized using field-emission scanning electron microscopy. The novolac-type phenol-based activated carbon retained hierarchical pores (micropores and mesopores); it exhibited high Brunauer-Emmett-Teller specific surface areas and hierarchical pore size distributions. The hierarchical pore novolac-type phenol-based activated carbon was used as an electrode in electric double-layer capacitors, and the specific capacitance and the retained capacitance ratio were measured. The specific capacitances and the retained capacitance ratio were enhanced, depending on the $SiO_2$ concentration in the material. This result is attributed to the hierarchical pore structure of the novolac-type phenol-based activated carbon.

Preparation of Spherical Activated Carbon and Their Physicochemical Properties

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Meng, Ze-Da
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.568-573
    • /
    • 2009
  • In this study, we used coal based activated carbons as starting material and phenolic resin (PR) as a bonding agent to prepare spherical shaped activated carbons. The textural properties of SAC were characterized by BET surface area, XRD, SEM, iodine adsorption, strength intensity and pressure drop. According to the results, the spherical activated carbon prepared with activated carbon and PR at a ratio of 60:40 was found to have the best formation of spherical shape, which was found in sample SAC40. After activation, SAC40 has high BET surface area, iodine adsorption capability and strength value, and lowest pressure drop.