• Title/Summary/Keyword: Activated energy

Search Result 991, Processing Time 0.029 seconds

A study on the improvement of hydrophilic properties of activated carbon surface by nitric acid treatment (질산 처리에 따른 활성탄 표면의 친수성 특성 향상에 관한 연구)

  • Kang, Hye Ju;Yang, So Yeong;Kim, Tae Min;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1241-1248
    • /
    • 2021
  • In order to figure out various environmental problems, various governments and companies are investigating more environmentally policies and technologies. In other words, activated carbon is widely used for the adsorption of different harmful gases and waste liquid treatment. However since the required surface properties are different in various industry, depending on the adsorption properties, the development of activated carbon demand in different ways. In this work, we have investigated and developed the activated carbon surface to improve the hydrophilic properties by nitric acid treatment through reforming of activated carbon.

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.

The Effects of Cinnamomum cassia Blume, Aconitum carmichaeli Debx, and Pueraria lobata Benth on Glucose and Energy Metabolism in C2C12 Myotubes (C2C12 골격근 세포에서 육계, 부자, 갈근 물 추출물의 당대사 및 에너지 조절 효과)

  • Song, Mi-Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.15 no.2
    • /
    • pp.131-136
    • /
    • 2015
  • Objectives: The prevalence of obesity and metabolic syndrome is increasing worldwide. Regulation of cellular energy metabolis has the potential to be manipulated therapeutically to serve as a target for obesity and insulin resistance. Skeletal muscle is regarded as a target for regulation of energy metabolism and insulin resistance. In this study, the authors investigated the regulatory effect of (Cinnamomum cassia Blume, CCB), Aconitum carmichaeli Debx (ACD), and Benth (Pueraria lobata Benth, PLB) on energy and glucose metabolism in C2C12 myotubes. Methods: The water extracts of CCB, ACD, and PLB (0.5 mg/ml) were treated in differentiated C2C12 myotubes. The expressions of adenosine monophosphate-activated protein kinase (AMPK) and phosphorylation AMPK were detected with western blotting. Glucose metabolism was investigated with glucose uptake assay and glucose consumption assay, total adenosine triphosphate (ATP) content was also analyzed. Results: CCB, ACD, and PLB activated the phophorylation of AMPK, they also increased the glucose metabolism and total ATP contents in C2C12 myotubes. Conclusions: This study suggests that CCB, ACD, and PLB have the potential to increase energy and glucose metabolism in skeletal muscle.

A Study on the Adsorption Characteristics of Benzene Using Activated Carbon from Waste Timber (폐벌목 활성탄의 벤젠 흡착특성)

  • Kim, Jong-Moon;Chung, Chan-Kyo;Min, Byong-Hun
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.430-436
    • /
    • 2013
  • In this study, experiments on the static adsorption of benzene were carried out using activated carbon made from Pinus koraiensis which is normally discarded waste timber in South Korea. The experiment were performed at 303.15 K, 318.15 K and 333.15 K under the pressure up to 7.999 kPa. Isothermal adsorption curves were obtained using Langmuir isotherm, Freundlich isotherm and Toth isotherm for comparison. Based on the fitting, the adsorption quantity of Benzene (q), the isothermal adsorption curves obtained from Langmuir isotherm and Toth isotherm showed the higher accuracy. Although there was little difference in accuracy between result from Langmuir isotherm and that from Toth isotherm, the adsorption quantity of Benzene (q) was expressed in terms of Langmuir isotherm because less parameters were required for Langmuir isotherm than for Toth isotherm. Moreover SEM images of the activated carbon from Pinus koraiensis and the commercial activated carbon were taken to observe the pore size development. The results showed that the perforation development of activated carbon from Pinus koraiensis (waste timber) was better than that of commercial activated carbon (DARCO A.C., SPG-100 A.C.). Adsorption quantity of benzene on activated carbon from Pinus koraiensis was confirmed to be higher than that on commercial activated carbon. Therefore, we may conclude that it is feasible to commercialize the process to manufacturing activated carbon from waste timber.

A Kinetic Study on the Ammonia Nitrogen Adsorption by Physical Characteristics of Activated Carbon (활성탄 물성에 따른 암모니아성 질소 흡착의 동력학적 연구)

  • Seo, Jeong-beom;Kang, Joon-won;Lee, Ik-soo
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.311-316
    • /
    • 2008
  • This study aimed to obtain equilibrium concentration on adsorption removal of ammonia nitrogen by activated carbon, to express the adsorption characteristics following Freundlich isotherm and also, based on the value obtained, to investigate the relationship between physical characteristics of activated carbon and dynamics of ammonia nitrogen removal by obtaining rate constant and effective pore diffusivity. The results summarized from this study are as follows. It was noted that powdered activated carbon showed better adsorption ability than granular activated carbon. The value of constant (f) of Freundlich isotherm of powered activated carbon was $4.6{\times}10^{-8}$ which is bigger than that of granular activated carbon. The adsorption rate constant on ammonia nitrogen of powered activated carbon with high porosity and low effective diameter was highest as 0.416 hr-1 and the effective pore diffusivity ($D_e$) was lowest as $1.17{\times}10^{-6}cm^2/hr$, and the value of ammonia nitrogen adsorption rate constant of granular activated carbon was $0.149{\sim}0.195hr^{-1}$. It was revealed that, with the same amount of dosage, the adsorptive power of activated carbon with lower effective diameter and bigger porosity was better and its rate constant was also high. With a little adsorbent dosage of 2 g, there was no difference removal ability of ammonia nitrogen as change of adsorption properties.

Structural Study of Oligosaccharides by Low Energy Collision Tandem Mass Spectrometry : Effect of the Acetylation Derivatization (저에너지 충돌 탄뎀 질량분석법을 이용한 올리고당의 연결구조 연구:아세틸화 반응이 미치는 영향)

  • Yoo Yoon, Eun Sun
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.3
    • /
    • pp.297-301
    • /
    • 1998
  • Linkage positions in oligosaccharides may be obtained by FAB CAD MS/MS (Fast Atom Bombardment Collision Activated Dissociation Mass Spectrometry/Mass Spectrometry). Acetylated derivatives of the linkage-isomeric trisaccharides exhibited more useful product ion patterns than the free trisaccharides and provided specific fragmentation patterns according to linkage positions. The reason for the useful linkage dependent spectra patterns of acetylated forms is related to the ability of each linkage in the oligosaccharides to absorb different levels of collision energy and rotational freedom of the individual glycosidic linkage.

  • PDF

Synthesis of Intermetallics and Nanocomposites by High-Energy Milling

  • Bernd F. Kieback;H. Kubsch;Alexander Bohm;M. Zumdick;Thomas Weissgaerber
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.416-421
    • /
    • 2002
  • Elemental powders are used in high energy milling processes for the synthesis of new compounds. The low temperature solid state reactions during milling in inert gas atmosphere may result in intermetallic phases, carbides, nitrides or silicides with a nanocrystalline structure. To obtain dense materials from the powders a pressure assisted densification is necessary. On the other side the defect-rich microstructure can be used for activated sintering of elemental powder mixtures to obtain dense bodies by pressureless sintering. Results are discussed for nanocrystalline cermet systems and for the sintering of aluminides and silicides.

Electrochemical characterization of supercapacitors based on carbons derived from Sorona activated by ZnCl2

  • Jisha, M.R.;Christy, Maria;Kim, Ae Rhan;Nahm, Kee Suk;Yoo, Dong Jin
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.309-314
    • /
    • 2012
  • Carbons derived by the pyrolysis of Sorona activated by $ZnCl_2$ in the ratio of 1:20 and non-porogen Sorona carbons are used as the electrode materials in asymmetric electrochemical supercapacitors and electrochemical behavior is investigated. Scanning electron microscopy (SEM) reveals the porogen free carbons show a flake-like structure and the $ZnCl_2$-treated Sorona carbons have a loose, disjoint structure without any particular shape. Cyclic voltammetric (CV) studies show specific prolate rectangular shape and gives good capacitive properties.

NO Reduction and Oxidation over PAN based-ACF

  • Kim, Je-Young;Lee, Jong-Gyu;Hong, Ik-Pyo
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2000
  • Catalytic reduction and oxidation of NO over polyacrylonitrile based activated carbon fibers (PAN-ACF) under various conditions were carried out to develop removal process of NO from the flue gas. The effect of temperature, oxygen concentration and the moisture content for the reduction of NO with ammonia as a reducing agent was investigated. The reduction of NO increased with the oxygen concentration, but decreased with the increased temperature. The moisture content in the flue gas affects the reduction of NO as the inhibition of the adsorption of the other components and the reaction on the surface of ACE For the oxidation of NO to $NO_2$ over PAN-ACF without using a reducing gas, it showed the temperature and the oxygen concentration of the flue gas are the important factors for the NO conversion in which the conversion increased with oxygen concentration and decreased with the temperature increase and might be the alternative option for the selective catalytic reduction process.

  • PDF

Hybrid Capacitors Using Organic Electrolytes

  • Morimoto, T.;Che, Y.;Tsushima, M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.174-177
    • /
    • 2003
  • Electric double-layer capacitors based on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle-life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is about 6 Wh/kg at a power density of 500W/kg which is smaller as compared with that of batteries and limits the wide spread use of the capacitors. Therefore, a new capacitor that shows larger energy density than that of electric double-layer capacitors is proposed. The new capacitor is the hybrid capacitor consisting of activated carbon cathode, carbonaceous anode and an organic electrolyte. Maximum voltage applicable to the cell is over 4.2V that is larger than that of the electric double-layer capacitor. As a result, discharged energy density on the basis of stacked volume of electrode, current collector and separator is more than 18Wh/l at a power density of 500W/l.