• 제목/요약/키워드: Activated carbon fiber electrode

검색결과 34건 처리시간 0.023초

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back;Jihyeon Ryu;Yong-Ho Park;Ick-Jun Kim;Sunhye Yang
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.184-193
    • /
    • 2023
  • This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

Electrosorption of U(IV) by Electochemically Modified Activated Carbon Fibers

  • Jung, Chong-Hun;Oh, Won-Zin;Lee, Yu-Ri;Park, Soo-Jin
    • Carbon letters
    • /
    • 제6권1호
    • /
    • pp.25-30
    • /
    • 2005
  • The electrosorption of U(VI) from waste water was carried out by using an activated carbon fiber (ACF) felt electrode in a continuous electrosorption cell. In order to enhance the electrosorption capacity at a lower potential, the ACF was electrochemically modified in an acidic and a basic solution. Pore structure and functional groups of the electrochemically modified ACF were examined, and the effects of the modification conditions were studied for the adsorption of U(VI). Specific surface area of all the ACFs was decreased by this modification. The amount of the acidic functional groups decreased with a basic modification, while the amount increased a lot with an acidic modification. The electrosorption capacity of U(VI) decreased on the acid modified electrode due to the shielding effect of the acidic functional groups. The base modified electrode enhanced the capacity due to a reduction of the acidic functional groups. The electrosorption amount of U(VI) on the base modified electrode at .0.3 V corresponds to that of the as-received ACF electrode at .0.9 V. Such a good adsorption capacity was due to a reduction of the shielding effect and an increase of the hydroxyl ions in the electric double layer on the ACF surface by the application of negative potential.

  • PDF

An Overview of the Activated Carbon Fibers for Electrochemical Applications

  • Lee Gyoung-Ja;Pyun Su-Il
    • 전기화학회지
    • /
    • 제9권1호
    • /
    • pp.10-18
    • /
    • 2006
  • This article is concerned with the overview of the activated carbon fibers. Firstly, this review provides a comprehensive survey of the overall processes for the synthesis of the activated carbon fibers from the carbonaceous materials. Subsequently, the physicochemical properties such as pore structures and surface oxygen functional groups of the activated carbon fibers were discussed in detail. Finally, as electrochemical applications of the activated carbon fibers to electrode materials for electric double-layer capacitor (EDLC), the electrochemical characteristics of the activated carbon fiber electrodes and the various methods to improve the capacitance and rate capability were introduced. In particular, the effect of pore length distribution (PLD) on kinetics of double-layer charging/discharging was discussed based upon the experimental and theoretical results in our work. And then we discussed in detail the applications of the activated carbon fibers to adsorbent materials for purification of liquid and gas.

Electrosorption of Uranium Ions in Liquid Waste

  • Lee, Hye-Young;Jung, Chong-Hun;Oh, Won-Zin;Park, Jin-Ho;Shul, Yong-Gun
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.64-68
    • /
    • 2003
  • A study on the electrosorption of uranium ions onto a porous activated carbon fiber (ACF) was performed to treat uraniumcontaining lagoon sludge. The result of the continuous flow-through cell electrosorption experiments showed that the applied negative potential increased the adsorption kinetics and capacity in comparison to the open-circuit potential (OCP) adsorption for uranium ions. Effective U(VI) removal is accomplished when a negative potential is applied to the activated carbon fiber (ACF) electrode. For a feed concentration of 100 mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1 mg/L. The selective removal of uranium ions from electrolyte was possible by the electrosorption process.

  • PDF

Electrosorption and Separation of $Co^{2+}$ and $Sr^{2+}$ Ions from Decontaminated Liquid Wastes

  • Kim, Jun-Soo;Jung, Chong-Hun;Oh, Won-Zin;Ryu, Seung-Kon
    • Carbon letters
    • /
    • 제3권1호
    • /
    • pp.6-12
    • /
    • 2002
  • A study on the electrosorption of $Co^{2+}$ and $Sr^{2+}$ ions onto a porous activated carbon fiber (ACF) was performed to treat radioactive liquid wastes resulting from chemical or electrochemical decontamination and to regenerate the spent carbon electrode. The result of batch electrosorption experiments showed that applied negative potential increased adsorption kinetics and capacity in comparison with open-circuit potential (OCP) adsorption for $Co^{2+}$ and $Sr^{2+}$ ions. The adsorbed $Co^{2+}$ and $Sr^{2+}$ ions are released from the carbon fiber by applying a positive potential on the electrode, showing the reversibility of the sorption process. The possibility of application of the electrosorption technique to the separation of radionuclides was examined. The result of a selective removal experiments of a single component from a mixed solution showed that perfect separation of $Co^{2+}$ and $Sr^{2+}$ ions was possible by the electrosorption process.

  • PDF

탄화온도가 상이한 활성탄소 복합제 전극이 전기이중층 케페시터의 층방전 특성에 미치는 영향 (Effect of carbonization temperature of AC/C composite electrode on electro double layer capacitor)

  • 조영근;정두환;김창수;박소진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1821-1823
    • /
    • 1999
  • Carbon is an attractive material on electro double capacitor which depend on charge storage in the electrode/electrolyte interfacial double layer. Carbonaceous material for double layer capacitor can be obtained from carbon powder, fiber, film and porous carbon sheet. The capacitance of electrodes using an activated carbon was influenced by a filling density of the carbon, thickness and internal resistance of the electrode. In this study. to reduce internal resistance and increase electric conductivity of the electrode. activated carbon/carbon(AC/C) composite electrode was fabricated. The capacitors which have energy densities of 68F/g(at $30^{\circ}C$), 109F/g(at $60^{\circ}C$) and $68F/cm^3$(at $30^{\circ}C$), $111F/cm^3$(at $60^{\circ}C$) were fabricated by using AC/C composite electrodes.

  • PDF

전자빔이 조사된 활성탄소섬유 기반 가스센서의 일산화질소 감지 특성 (Nitric Oxide Sensing Property of Gas Sensor Based on Activated Carbon Fiber Radiated by Electron-beam)

  • 이상민;정민정;이경민;이영석
    • 공업화학
    • /
    • 제28권3호
    • /
    • pp.299-305
    • /
    • 2017
  • 활성탄소섬유가 전사선 조사에 의해 표면 개질되었고, NO가스 감지 능력에 미치는 영향을 살펴보기 위하여 이를 가스센서 전극으로 이용하였다. XPS 분석결과는 전자선에 의하여 표면처리된 활성탄소섬유의 산소 성분이 감소하였으며 표면의 $sp^2$ 결합탄소가 증가한 것을 보여주었다. 이러한 결과는 전자빔 조사에 따른 활성탄소섬유 표면의 구조적 변형때문으로 사료된다. 100 kGy의 전자빔이 조사된 활성탄소섬유 전극의 NO가스 민감도는 약 4%에서 약 8%로 크게 증가하였고, 그 감지 시간 또한 약 360 s에서 120 s로 의미 있게 향상되었다. 이러한 결과는 활성탄소섬유의 전자빔 조사에 의하여 $sp^2$ 탄소 결합의 증가때문에 기인한 것으로, 이는 NO가스 센싱에 대한 전극저항 변화에 상당히 영향을 주었다.