• Title/Summary/Keyword: Activated alumina

Search Result 78, Processing Time 0.026 seconds

Fabrication of Activated Alumina Using Aluminum Hydroxide by a Hydrothermal Process (수산화알루미늄으로부터 수열법을 이용한 활성 알루미나 제조에 관한 연구)

  • Bae, Hyeon Cheol;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.384-389
    • /
    • 2013
  • Activated alumina was fabricated with aluminum hydroxide in this study. High-purity alumina gel and boehmite were prepared from aluminum hydroxide by a hydrothermal process and fired to activate alumina having a surface area of 380 ~ 480 $m^2/g$ with less loss of ignition. The aging and drying condition during the fabrication process affected the loss of ignition, the sedimentation time of the alumina suspension, as well as the surface area of the activated alumina. For pellet-type activated alumina, the pre-fired alumina gel and boehmite were press-formed and fired at $400^{\circ}C$ and $550^{\circ}C$ for 6 h, respectively. The fired pellets showed a low density of 2.0 ~ 2.2 $g/cm^3$ with 20% firing shrinkage and sufficient handling strength. In this study, a new fabrication process for high-quality activated alumina with aluminum hydroxide is introduced. The effects of the processing parameters on the activated alumina properties are also examined.

Removal of Phosphorus in Wastewater by Ca-Impregnated Activated Alumina

  • Kang, Seong Chul;Lee, Byoung Ho
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.197-203
    • /
    • 2012
  • Phosphorus removal during discharge of wastewater is required to achieve in a very high level because eutrophication occurs even at a very low phosphorus concentration. However, there are limitations in the traditional technologies in the removal of phosphorus at very low concentration, such as at a level lower than 0.1 mg/L. Through a series of experiments, a possible technology which can remove phosphate to a very low level in the final effluent of wastewater was suggested. At first Al, Zn, Ca, Fe, and Mg were exposed to phosphate solution by impregnating them on the surface of activated alumina to select the material which has the highest affinity to phosphate. Kinetic tests and isotherm tests on phosphate solution have been performed on four media, which are Ca-impregnated activated alumina, activated alumina, Ca-impregnated loess ball, and loess ball. Results showed that Ca-impregnated activated alumina has the highest capacity to adsorb phosphate in water. Scanning electron microscope image analysis showed that activated alumina has high void volume, which provides a large surface area for phosphate to be adsorbed. Through a continuous column test of the Ca-impregnated activated alumina it was discovered that about 4,000 bed volumes of wastewater with about 0.2 mg/L of phosphate can be treated down to lower than 0.14 mg/L of concentration.

A Study on the Preparation of Alumina Powders from Bauxite by Wet Acid Process and Their Utilization (II) : Mullitization of Pyrophyllite-Aluminum Hydrate Gel Mixture (Bauxite로부터 습식산처리법에 의한 알루미나 분체의 제조 및 그 이용에 관한 연구(II) : 납석-Aluminum Hydrate Gel 혼합물의 Mullite화 거동)

  • 이승현;조철구;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1011-1019
    • /
    • 1990
  • Pyrophyllite, which has low impurities, was used in the synthesis of mullite to decrease the glass phase, which can be formed from impurities such as alkali and alkali earth elemetns present in raw materials. But, as pyrophyllite has less alumina content than other aluminosilicate materials such as kaolin, more alumina sources were needed in the synthesis of mullite. In other to investigate the effect of particle size of alumina sources on the mullitization of pyrophyllite, aluminum hydrate gel and activated alumina were used. When activated alumina, which has large particle size, was added to pyrophyllite, mullitization was not fully accomplished regardless of temprature. In the case of aluminum hydrate gel, which has small particle size, the maximum yield of mullite was about 90.3% at 1700$^{\circ}C$, and grain size of mullite was larter than the case of activated alumina was added.

  • PDF

The Application of Activated Alumina for the Selective Analysis of Cr(III) and Cr(VI) (활성 알루미나를 이용한 크롬 3가 및 6가의 분리.분석)

  • Lim, Heon-Sung;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.544-547
    • /
    • 2000
  • By using surface modified activated alumina with AI(III) and flame atomic absorption spectrometry, a rapid and convenient method for the selective analysis of chromium (III) and chromium (VI) in water has been developed. This technique appears to work accurately under optimum pH range from 3 to 5.

  • PDF

Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina (나노크기 매킨나와이트로 코팅된 알루미나에 의한 아비산염의 제거)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2013
  • Due to the large specific surface area and great reactivity toward environmental contaminants, nanocrystalline mackinawite (FeS) has been widely applied for the remediation of contaminated groundwater and soil. Furthermore, nanocrystalline FeS is rather thermodynamically stable against anoxic corrosion, and its reactivity can be regenerated continuously by the activity of sulfate-reducing bacteria. However, nanocrystalline mackinawite is prone to either spread out along the groundwater flow or cause pore clogging in aquifers by particle aggregation. Accordingly, this mineral should be modified for the application of permeable reactive barriers (PRBs). In this study, coating methods were investigated by which mackinawite nanoparticles were deposited on the surface of alumina or activated alumina. The amount of FeS coating was found to significantly vary with pH, with the highest amount occurring at pH ~6.9 for both minerals. At this pH, the surfaces of mackinawite and alumina (or activated alumina) were oppositely charged, with the resultant electrostatic attraction making the coating highly effective. At this pH, the coating amounts by alumina and activated alumina were 0.038 and 0.114 $mmol{\cdot}FeS/g$, respectively. Under anoxic conditions, arsenite sorption experiments were conducted with uncoated alumina, uncoated activated alumina, and both minerals coated with FeS at the optimal pH for comparison of their reactivity. Uncoated activated alumina showed the higher arsenite removal compared to uncoated alumina. Notably, the arsenite sorption capacity of activated alumina was little changed by the coating with FeS. This might be attributed to the abundance of highly reactive hydroxyl functional groups (${\equiv}$AlOH) on the surface of activated alumina, making the arsenite sorption by the coated FeS unnoticeable. In contrast, the arsenite sorption capacity of alumina was found to increase substantially by the FeS coating. This was due to the consumption of the surface hydroxyl functional groups on the alumina surface and the subsequent occurrence of As(III) sorption by the coated FeS. Alumina, on the surface area basis, has about 8 times higher FeS coating amount and higher As(III) sorption capacity than silica. This study indicates that alumina is a better candidate than silica for the coating of nanocrystalline mackinawite.

Removal of BrO3- from aqueous solution (수용액에서 브롬산 이온을 제거하는 방법)

  • Lim, Heon-Sung;Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.401-405
    • /
    • 2011
  • The efficient removal of bromate ($BrO_3^-$) from aqueous solutions was investigated using activated alumina. Bromate is a disinfection by-product, generally formed by the reaction of ozone and bromide in drinking water during ozonation process. The removal efficiency was about 90% for bromate (500 ng/mL) ion with acidic activated alumina but over 95% with silver or aluminum treated acidic activated alumina without any treatments of neutral water within 1~2 min.

Removal of I- and IO3- from Aqueous Solution (활성알루미나를 이용하여 방사성 폐수 중 I-와 IO3-를 제거하는 방법)

  • Lim, Heon-Sung;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.519-523
    • /
    • 2009
  • $^{129}I$ is especially one of the most harmful radioactive elements because of its long half-life ($t_{1/2}$=$1.7{\times}10^7$ yr). The efficient removal of iodide ($I^-$) and iodate (${IO_3}^-$) in a aqueous solution by adsorption using activated alumina and activated carbon was studied. The removal efficiency was over 99% for iodide ion with silver treated basic alumina and iodate ion with acidic alumina or silver treated acidic alumina without any chemical addition or physical treatments.

Resistance of Alkali Activated Slag Cement Mortar to Sulfuric Acid Attack (알칼리 활성화 슬래그 시멘트 모르타르의 내황산성)

  • Min, Kyung-San;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.633-638
    • /
    • 2007
  • The setting time of alkali activated slag cement tends to be much faster than ordinary Portland cement, and its compressive strength had been higher from the 1 day but became lower than that of the cement on the 28 days. According to the results of the surface observation, weight loss, compressed strength, and erosion depth tests on the sulphuric acid solution. It has been drawn that alkali activated slag cement has a higher sulphate resistance than ordinary Portland cement, and in particular, the alkali activated slag cement added 5 wt% alumina cement has little deterioration on the sulphuric acid solution. The reason why the alkali activated slag cement has higher sulphate resistance than other hardened cement pastes is that it has no $Ca(OH)_2$ reactive to sulphate ion, and there is little $CaSO_4{\cdot}2H_2O$ production causing volume expansion, unlike other pastes. And it is supposed that $Al(OH)_3$ hydrates with high sulphate resistance, which is produced by adding the alumina cement increases the sulfate resistance.

Investigation of As(III) Sorption by Sand and Alumina under Anoxic Conditions

  • Lee, Seungyeol;Park, Minji;Jeong, Hoon Young
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.532-538
    • /
    • 2022
  • Under anoxic conditions, this study investigated removal of dissolved As(III) by Si and Al oxides including natural sand, chemically washed sand (silica), alumina, and activated alumina. Despite the similar surface area, natural sand showed greater extents of As(III) sorption than chemically washed sand. This was likely due to the high reactivity of Fe(oxyhydr)oxide impurities on the surface of natural sand. For both sands, As(III) sorption was the greatest at pH 7.1, in agreement with the weakly dissociating tendency of arsenous acid. Also, the least sorption was observed at pH 9.6. At basic pH, elevated silicate, which originated from the dissolution of silica in sands, would compete with As(III) for sorption. Due to the highest surface area, activated alumina was found to quantitatively immobilize the initially added As(III) (6.0×10-7-2.0×10-5 M). Alumina showed As(III) sorption compared to or greater than chemically washed sand, although the former had less than 6% of the surface of area the latter. The greater reactivity of alumina than chemically washed sand can be explained by using the shared charge of oxygen.

Investigation on the Removal of Dissolved Aluminum Ion in Drinking Water (정수중(淨水中)의 용존(溶存)알루미늄 제어방안(制御方案)의 조사(調査))

  • Choi, Suing-Il;Kim, Moon-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.42-52
    • /
    • 1997
  • The affection of activated carbon on the dissolved aluminum ion in drinking water has been observed. In addition, the aluminum ion removal capability of activated, alumina, chitosan, and ion exchange resin have been investigated. Experimental results indicated that the coal based activated carbon released considerable amount of aluminum ion to the water while coconut shell based activated carbon didn't. However the release was not continuous. Activated alumina didn't show any recognizable removal capability for aluminum ion in water. Particulate chitosan has removed aluminum ion although dissolved chitosan has not. However it need to development a regeneration process for chitosan to be an effective mean for aluminum ion removal. Ion exchange resin showed a reliable aluminum ion removal capability. The ion exchange capacity was 2.63 meq/g resin for the aluminum ion in drinking water.

  • PDF