• 제목/요약/키워드: Activated Sludge Model No.1

검색결과 17건 처리시간 0.028초

활성슬러지 모델 수정을 통한 동시 질산화.탈질 반응 해석 (Interpretation of Simultaneous Nitrification & Denitrification Reaction by Modifying Activated Sludge Models(ASMs))

  • 김효수;김예진;이성학;문태섭;최재훈;김창원
    • 대한환경공학회지
    • /
    • 제30권2호
    • /
    • pp.199-206
    • /
    • 2008
  • 동시 질산화 탈질은 낮은 DO 농도로 유지되는 동일한 반응조에서 질산화 반응과 탈질 반응이 동시에 발생함을 의미한다. 동시 질산화 탈질 반응을 모사할 수 있는 몇몇 수학적 모델들이 개발되었지만, 모델 구조가 복잡하거나 모델을 적용하기 위한 다양한 제반 지식을 얻어야만 정확한 결과를 얻을 수 있어 범용적인 모델 적용에 한계점이 있는 단점이 있었다. 이와 같은 문제를 해결하기 위해, 동시 질산화 탈질 반응이 반응기 내 DO 농도의 부분적 부재로 발생한다는 가정 하에, 만약 활성슬러지모델을 사용하여 동시 질산화 탈질 반응의 거동을 해석할 수 있다면, 모델의 구조가 다른 개발된 모델들보다 복잡하지 않고, 다양한 운전 조건에서 모델이 활용될 수 있을 것으로 판단하였다. 하지만 기존의 활성슬러지 모델로는 호기 조건에서 발생하는 탈질 반응을 표현하기 어려운 점이 있기 때문에, 본 연구에서는 활성슬러지 모델을 수정함으로써 동시 질산화 탈질 반응을 해석하고자 하였다. 활성슬러지 모델 No.1(ASM1)이 선택이 되어 탈질 반응식이 수정되었으며, 수정된 ASM1의 시뮬레이션 결과는 측정값의 거동을 잘 모사하였다. 이를 통해 수정된 ASM1은 실험 결과에 기반하여 구한 ${\eta}_g$의 값과 호기 조건에서의 탈질 반응을 모사하기 위해 수정된 Monod 식의 영향으로 모델의 구조가 본 연구의 실험 결과에서 확인된 동시 질산화 탈질 반응을 해석할 수 있도록 구성되었다고 사료된다.

최대 호흡율을 이용한 활성슬러지 모델 No.1 보정: 자가영양균 최대비성장율 추정 (Calibration of Activated Sludge Model No. 1 using Maximum Respiration Rate: Maximum Autotrophs Specific Growth Rate)

  • 최은희
    • 대한환경공학회지
    • /
    • 제27권4호
    • /
    • pp.409-413
    • /
    • 2005
  • 본 논문에는 자가영양균의 최대비성장율 추정법이 제시되었다. 먼저 질산화균의 농도가 질산화 된 암모니아, 슬러지 일령 및 사멸계수를 이용하여 시뮬레이션 되었고, 다음단계로 과잉암모니아를 공급하여 질산화균의 호흡율을 측정하였다. 자가영양균의 최대비성장율은 ${\mu}_{max,A}\;=\;OUR_{max,A}/Y_A$의 관계를 통해 계산되어질 수 있으며 추정된 최대비성장율은 운전기간에 걸쳐 일정한 값을 가지지 앉고 시간에 따라 변화한다는 결과를 얻었다. 본 연구를 통해 최대호흡율을 이용한 최대비성장율의 동적 추정법이 수행되었고, 일정한 최대비성장율를 이용한 처리장 운전결과 예측은 처리장 거동을 예측할 수 없으며 활성슬러지공정의 성능예측을 위한 시뮬레이션을 위해서는 동적 추정된 매개변수의 사용이 필요함을 확인하였다.

미생물호흡률 측정에 의한 COD분액과 공정모사를 이용한 동절기 하수유출수의 NBOD 발생원인 분석 (The Analysis of NBOD from Sewer Outflow in Winter Season by the COD Fractions using the Respirometry and Process Simulations)

  • 조욱상;강성욱;임동혁
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.96-103
    • /
    • 2010
  • In this work, the presence of nitrification biochemical oxygen demand (NBOD) frequently occurred in the sewer outflow in winter season was analysed by the COD fraction methods using the respirometry and process simulations with real operation data measurements and analysis. The activated sludge models applied in this process simulation were based on the ASM No.2d temp. models, published by International Association on Water Quality (IAWQ). The ASM No.2d model is an extension of the ASM No.2 model and takes into account of carbon removal, nitrification, denitrification and phosphorus removal. The denitrifying capacity of phosphorus accumulating organisms has been implemented in the ASM No.2d model because experimental evidence shows that some of the phosphorus accumulating organisms can denitrify. It was shown that the concentrations of autotrophs (X_AUT) in the secondary clarifier and the $NH_4-N$ of T-N increased in the presence of NBOD measurements. Because of the low temperature (average $8^{\circ}C$) and possible operational troubles, the outcoming autotrophs exhausted oxygen in the process of nitrifying $NH_4-N$.

탄화분변토를 이용한 Benzene의 흡착특성 (Adsorption Characteristics of Benzene by Carbonized Cast)

  • 김재홍;손희정;김미룡
    • 환경위생공학
    • /
    • 제14권1호
    • /
    • pp.97-102
    • /
    • 1999
  • This study was carried out view that reuse of sludge of adsorbent for benzene in carbonized cast compare with activated carbon. Not only the carbonized cast is good than carbonized carbon in cation exchange capacity and 12 adsorption capacity, but also benzene adsorption capacity is no differences compare to activated carbon. As results, benzene adsorption capacity of carbonized cast and activated carbon are decreased as temperature increase($25~70^{\circ}C$).It is compatible in Lamgmuir model. Therefore, carbonized cast is applied general adsorbent. From experimental results and data regression, in model concerning effect of temperature, relative errors between the experimental data and those calculated by the model are within the range of 1.2~7.8%. In relative humidity effect (RH 0.25~0.50) of benzene adsorption, modified Freundlich model : $QB_{enzene}{;\}QB_{enzene},{\}_{RH=0}=1-kRH^{IN}$, relative errors between the experimental data and those calculated by the model are within are range of 0.5-5.1%. The constants k and l/n in equation were found to be 1.25, 1.89 in carbonized cast.

  • PDF

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 1998년도 가을 학술발표회 프로그램
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

호기적 조건에서 플라스틱 생분해에 영향을 미치는 도시 하수 오니의 성질 (Characteristics of Municipal Sewage Sludge Affecting the Biodegradation of a Plastic Material Under Aerobic Condition)

  • 서인선;이명천;김병홍;신평균
    • 한국미생물·생명공학회지
    • /
    • 제22권4호
    • /
    • pp.436-442
    • /
    • 1994
  • The characteristics of activated sludge affecting the biodegradation of plastic materials under aerobic condition were studied using cellophane film as a model system. The activated sludges of site 3, which treat a mixture of domestic sewage and supernatant of septic tank, obtained from December 1993 to April 1994 showed similar biodegradation activities. Biodegradations for 28 days reached around 80%. Viable cell number of inoculums maintained at a level of 10$^{6}$~10$^{7}$ /ml. In this range, viable cell number showed no relationship with biodegradation activities. The activa- ted sludges of site 2, which treat a mixture of domestic sewage and anaerobic digest of nightsoil, obtained four times from April 1993 to April 1994 showed very different biodegradation activities ranged from 20% to 80% for 28 days. Inoculum size affects biodegradation significantly. One percent inoculum showed the best biodegradation among the inoculum sizes of 0.1, 1.0 and 10%. Ten percent inoculum revealed inhibitory effects on the biodegradation activity which can be greatly reduced by centrifugation and filtration. Filtration was better than centrifugation in reducing inhibitory effects.

  • PDF

혐기-호기-무산소 SBR 반응조를 이용한 ASM No. 2 모델의 간략화에 관한 연구 (Simplification of ASM No. 2 using Anaerobic-Aerobic-Anoxic SBR)

  • 김신걸;최인수;구자용
    • 상하수도학회지
    • /
    • 제22권1호
    • /
    • pp.3-14
    • /
    • 2008
  • ASM No. 2(Activated sludge model No. 2) is very useful model to analyze the wastewater treatment which removes nitrogen and phosphorus. But, it is difficult to apply ASM No. 2 to control of wastewater treatment since it has 17 material divisions and 46 parameters. So the purpose of this study was the simplification of ASM No. 2 and the provement of simplification model. Firstly ASM No. 2 was simplified with 5 material division and three phases(Anaerobic, aerobic, anoxic phases). The simplified model was proved by R-square using track study data. As a result of provement, the values of R-square in ${NH_4}^+$ were 0.9815 in ASM No. 2 and 0.9250 in simplified model and in ${NO_3}^-$ were 0.8679 in ASM No. 2 and 0.7914 in simplified model and in ${PO_4}^{3-}$ are 0.9745 in ASM No. 2 and 0.9187 in the simplified model when the ability to express the material variation was compared by R-square. So, the simplified model has enough ability to express the variation of ${NH_4}^+$, ${NO_3}^-$ and ${PO_4}^{3-}$.

퍼지제어기를 이용한 하폐수처리공정의 최적화 (Fuzzy Control and Optimization for the Wastewater Treatment Process)

  • 천성표;김봉철;김성신
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.452-455
    • /
    • 2000
  • There are increasingly important financial incentives and environmental consideration to improve the effluent quality of wastewater from domestic and industrial users. The activated sludge process is a widely used biological wastewater treatment process. The activated sludge process is complicated due to the many factors such as the variation of influent flowrate and concentration, the complexity of biological reactions and the various operation conditions. Nowadays, not only suspended solids and residual carbon, but also nitrogen and phosphorous concentration of the effluent water must be taken into account for the design and operation of wastewater treatment plants. Also, the effluent quality to be met are more stringent. Therefore, an intelligent control approach is required in order to successful biological nitrogen removal. In this paper, the strategies for dosage of extra carbon in the anoxic zone and DO concentration in the aerobic zone are presented and evaluated through the simulation using the denitrification layout of the IWA simulation benchmark implemented by Matlab$\^$/5.3/Simulink$\^$/3.0. The control strategy to achieve sufficient denitrification rates in an anoxic zone. Methanol is used as an external extra carbon source. The external extra carbon source is required for the nitrogen removal process because nitrogen and organic concentration are fluctuated in the influent flowrate. The dissolved oxygen is calculated by So concentration in the activated sludge model NO.1. The air flowrate of each aerobic reactor is intelligently controlled to achieve the predefined setpoints. Air flowrate is adjusted by the fuzzy logic controller that includes two inputs and one output. The objective function for the optimization procedure is designed to improve effluent quality and reduce the operating cost.

  • PDF

활성슬러지 모델을 이용한 A2O공법 영양염류 제거 및 미생물 거동 (Nutrients removal and microbial activity for A2O Process Using Activated Sludge Models)

  • 윤현식;김덕진;최봉호;김문일
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.889-896
    • /
    • 2012
  • In this study, simulation results of nitrogen and phosphorus removals and microbial activities for an $A_2O$ process in wastewater treatment plant are presented by using Activated Sludge Models (ASMs). Simulations were performed using pre-calibrated model and layout implemented in GPS-X simulation software. The models were used to investigate variations of SRT, water temperature, DO and C/N ratio effect on nutrients removal and microbial activity. According to the simulated results, the successful nitrification required SRT higher than 10.3 days, whereas increase of $NO_3$-N loading in the anaerobic reactor caused phosphorus release by PAOs; the effluent $NH_4$-N showed rapid change between $12^{\circ}C$(21.7 mg/L) and $13^{\circ}C$(3.2 mg/L); the effluent phosphorus was increased up to 1.9 mg/L at water temperature of $25^{\circ}C$; the DO increase was positive for heterotrophs and autotrophs growths but negative for PAOs growth; the PAOs showed low activity when C/N ratio was lower than 2.5. The experimental results indicated that the calibrated models can assure the prediction quality of the ASMs and can be used to optimize the $A_2O$ process.

연속 회분식 반응기에서 최적 질소 제거를 위한 최적 궤적 찾기와 재최적화 (Optimal Trajectory Finding and re-optimization of SBR for Nitrogen Removal)

  • 김영황;유창규;이인범
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.73-80
    • /
    • 2007
  • 본 연구는 생물학적 폐수 처리 공정인 연속 회분식 반응기(sequencing batch reactor, SBR)에서 질소 제거 최적화를 위해 활성 오니 공정모델(activated sludge model, ASM No.1, ASM1)과 반복 동적 프로그래밍(iterative dynamic programming, IDP)을 이용하여 SBR의 처리 기준을 만족하면서 최적 운전 조건을 탐색하고 하는 것을 목적으로 하였다. 연속 회분식 반응기의 최적화를 위해 에너지 최소화와 최소 회분 시간이 질소 처리의 농도 그래프의 면적과 비례하는 점을 이용하여 이를 고려한 새로운 performance index를 제안하였다. 회분 시간과 에너지에 대항하는 면적에 적절한 비중(weight)을 줌으로써 최소 회분 시간과 최소 에너지 문제를 동시에 고려하였다. SBR에서 IDP를 이용한 최적 운전서 최적 용존 산소 농도의 설정치가 전체 회분 시간과 전체 에너지 비용에 동시에 영향을 미침을 알 수 있었고 최적 운전시 기존의 운전 방법과 같은 유기물과 질소 제거가 가능하고 동시에 전체 비용을 20%까지 줄일 수 있었다. 더 나아가 공정이상으로 실제 공정이 모델과 다른 모델링 에러에 의해 잘못된 모사의 경우에도 IDP를 이용하여 다시 재최적화할 수 있음을 보였다.