• Title/Summary/Keyword: Activated Sludge Model No. 1

Search Result 17, Processing Time 0.02 seconds

Interpretation of Simultaneous Nitrification & Denitrification Reaction by Modifying Activated Sludge Models(ASMs) (활성슬러지 모델 수정을 통한 동시 질산화.탈질 반응 해석)

  • Kim, Hyo-Su;Kim, Ye-Jin;Lee, Sung-Hak;Moon, Tae-Sup;Choi, Jae-Hoon;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.199-206
    • /
    • 2008
  • Simultaneous nitrification and denitrification means that nitrification and denitrification occur concurrently in the same reaction vessel under low DO concentration. Some mathematical models developed to simulate simultaneous nitrification and denitrification reaction, but they have the complex model structures or have limitations of model application. To solve these problems, if possible that predict the behavior of simultaneous nitrification and denitrification reaction by activated sludge model, structures of the model is less complex than previous models and applies the various operation conditions. But original activated sludge models have difficulties in representing the denitrification reaction under aerobic condition. So the aim of this study is to interpret simultaneous nitrification and denitrification reaction by modifying activated sludge model. Original activated sludge model No.1(ASM1) was selected and modified. The simulation result in modified ASM1 predicted appropriately for the measured data. This indicates the structures of ASM1 are properly improved for interpretation of simultaneous nitrification and denitrification reaction.

Calibration of Activated Sludge Model No. 1 using Maximum Respiration Rate: Maximum Autotrophs Specific Growth Rate (최대 호흡율을 이용한 활성슬러지 모델 No.1 보정: 자가영양균 최대비성장율 추정)

  • Choi, E.H.;Buys, B.;Temmink, H.;Klapwijk, B.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.409-413
    • /
    • 2005
  • A method to estimate the autotrophic maximum specific growth rate is presented in this paper. First of all, the concentration of nitrifier is simulated based on the amount of N nitrified, the sludge age and the default value for the decay coefficient. Secondly the OUR of the sludge with access of ammonia is measured. The maximum specific growth rate can be calculated as ${\mu}_{max,A}\;=\;OUR_{max,A}/Y_A$. It was demonstrated that the maximum specific growth rate of autotrophic biomass is not a constants but a time variable parameter. It is concluded that using $OUR_{max,A}$ for dynamic estimating maximum specific growth rate is a good approach and that using a constant value for the maximum specific growth rate over a longer period of time could not predict the performance of activated sludge plants.

The Analysis of NBOD from Sewer Outflow in Winter Season by the COD Fractions using the Respirometry and Process Simulations (미생물호흡률 측정에 의한 COD분액과 공정모사를 이용한 동절기 하수유출수의 NBOD 발생원인 분석)

  • Cho, Wook Sang;Kang, Seong Wook;Im, Dong Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.96-103
    • /
    • 2010
  • In this work, the presence of nitrification biochemical oxygen demand (NBOD) frequently occurred in the sewer outflow in winter season was analysed by the COD fraction methods using the respirometry and process simulations with real operation data measurements and analysis. The activated sludge models applied in this process simulation were based on the ASM No.2d temp. models, published by International Association on Water Quality (IAWQ). The ASM No.2d model is an extension of the ASM No.2 model and takes into account of carbon removal, nitrification, denitrification and phosphorus removal. The denitrifying capacity of phosphorus accumulating organisms has been implemented in the ASM No.2d model because experimental evidence shows that some of the phosphorus accumulating organisms can denitrify. It was shown that the concentrations of autotrophs (X_AUT) in the secondary clarifier and the $NH_4-N$ of T-N increased in the presence of NBOD measurements. Because of the low temperature (average $8^{\circ}C$) and possible operational troubles, the outcoming autotrophs exhausted oxygen in the process of nitrifying $NH_4-N$.

Adsorption Characteristics of Benzene by Carbonized Cast (탄화분변토를 이용한 Benzene의 흡착특성)

  • 김재홍;손희정;김미룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.97-102
    • /
    • 1999
  • This study was carried out view that reuse of sludge of adsorbent for benzene in carbonized cast compare with activated carbon. Not only the carbonized cast is good than carbonized carbon in cation exchange capacity and 12 adsorption capacity, but also benzene adsorption capacity is no differences compare to activated carbon. As results, benzene adsorption capacity of carbonized cast and activated carbon are decreased as temperature increase($25~70^{\circ}C$).It is compatible in Lamgmuir model. Therefore, carbonized cast is applied general adsorbent. From experimental results and data regression, in model concerning effect of temperature, relative errors between the experimental data and those calculated by the model are within the range of 1.2~7.8%. In relative humidity effect (RH 0.25~0.50) of benzene adsorption, modified Freundlich model : $QB_{enzene}{;\}QB_{enzene},{\}_{RH=0}=1-kRH^{IN}$, relative errors between the experimental data and those calculated by the model are within are range of 0.5-5.1%. The constants k and l/n in equation were found to be 1.25, 1.89 in carbonized cast.

  • PDF

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Characteristics of Municipal Sewage Sludge Affecting the Biodegradation of a Plastic Material Under Aerobic Condition (호기적 조건에서 플라스틱 생분해에 영향을 미치는 도시 하수 오니의 성질)

  • Seo, In-Sun;Lee, Myung-Cheon;Kim, Byung-Hong;Shin, Pyong-Kyun
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.436-442
    • /
    • 1994
  • The characteristics of activated sludge affecting the biodegradation of plastic materials under aerobic condition were studied using cellophane film as a model system. The activated sludges of site 3, which treat a mixture of domestic sewage and supernatant of septic tank, obtained from December 1993 to April 1994 showed similar biodegradation activities. Biodegradations for 28 days reached around 80%. Viable cell number of inoculums maintained at a level of 10$^{6}$~10$^{7}$ /ml. In this range, viable cell number showed no relationship with biodegradation activities. The activa- ted sludges of site 2, which treat a mixture of domestic sewage and anaerobic digest of nightsoil, obtained four times from April 1993 to April 1994 showed very different biodegradation activities ranged from 20% to 80% for 28 days. Inoculum size affects biodegradation significantly. One percent inoculum showed the best biodegradation among the inoculum sizes of 0.1, 1.0 and 10%. Ten percent inoculum revealed inhibitory effects on the biodegradation activity which can be greatly reduced by centrifugation and filtration. Filtration was better than centrifugation in reducing inhibitory effects.

  • PDF

Simplification of ASM No. 2 using Anaerobic-Aerobic-Anoxic SBR (혐기-호기-무산소 SBR 반응조를 이용한 ASM No. 2 모델의 간략화에 관한 연구)

  • Kim, Shin Geol;Choi, In Su;Koo, Ja Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.3-14
    • /
    • 2008
  • ASM No. 2(Activated sludge model No. 2) is very useful model to analyze the wastewater treatment which removes nitrogen and phosphorus. But, it is difficult to apply ASM No. 2 to control of wastewater treatment since it has 17 material divisions and 46 parameters. So the purpose of this study was the simplification of ASM No. 2 and the provement of simplification model. Firstly ASM No. 2 was simplified with 5 material division and three phases(Anaerobic, aerobic, anoxic phases). The simplified model was proved by R-square using track study data. As a result of provement, the values of R-square in ${NH_4}^+$ were 0.9815 in ASM No. 2 and 0.9250 in simplified model and in ${NO_3}^-$ were 0.8679 in ASM No. 2 and 0.7914 in simplified model and in ${PO_4}^{3-}$ are 0.9745 in ASM No. 2 and 0.9187 in the simplified model when the ability to express the material variation was compared by R-square. So, the simplified model has enough ability to express the variation of ${NH_4}^+$, ${NO_3}^-$ and ${PO_4}^{3-}$.

Fuzzy Control and Optimization for the Wastewater Treatment Process (퍼지제어기를 이용한 하폐수처리공정의 최적화)

  • 천성표;김봉철;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.452-455
    • /
    • 2000
  • There are increasingly important financial incentives and environmental consideration to improve the effluent quality of wastewater from domestic and industrial users. The activated sludge process is a widely used biological wastewater treatment process. The activated sludge process is complicated due to the many factors such as the variation of influent flowrate and concentration, the complexity of biological reactions and the various operation conditions. Nowadays, not only suspended solids and residual carbon, but also nitrogen and phosphorous concentration of the effluent water must be taken into account for the design and operation of wastewater treatment plants. Also, the effluent quality to be met are more stringent. Therefore, an intelligent control approach is required in order to successful biological nitrogen removal. In this paper, the strategies for dosage of extra carbon in the anoxic zone and DO concentration in the aerobic zone are presented and evaluated through the simulation using the denitrification layout of the IWA simulation benchmark implemented by Matlab$\^$/5.3/Simulink$\^$/3.0. The control strategy to achieve sufficient denitrification rates in an anoxic zone. Methanol is used as an external extra carbon source. The external extra carbon source is required for the nitrogen removal process because nitrogen and organic concentration are fluctuated in the influent flowrate. The dissolved oxygen is calculated by So concentration in the activated sludge model NO.1. The air flowrate of each aerobic reactor is intelligently controlled to achieve the predefined setpoints. Air flowrate is adjusted by the fuzzy logic controller that includes two inputs and one output. The objective function for the optimization procedure is designed to improve effluent quality and reduce the operating cost.

  • PDF

Nutrients removal and microbial activity for A2O Process Using Activated Sludge Models (활성슬러지 모델을 이용한 A2O공법 영양염류 제거 및 미생물 거동)

  • Yoon, Hyunsik;Kim, Dukjin;Choi, Bongho;Kim, Moonil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.889-896
    • /
    • 2012
  • In this study, simulation results of nitrogen and phosphorus removals and microbial activities for an $A_2O$ process in wastewater treatment plant are presented by using Activated Sludge Models (ASMs). Simulations were performed using pre-calibrated model and layout implemented in GPS-X simulation software. The models were used to investigate variations of SRT, water temperature, DO and C/N ratio effect on nutrients removal and microbial activity. According to the simulated results, the successful nitrification required SRT higher than 10.3 days, whereas increase of $NO_3$-N loading in the anaerobic reactor caused phosphorus release by PAOs; the effluent $NH_4$-N showed rapid change between $12^{\circ}C$(21.7 mg/L) and $13^{\circ}C$(3.2 mg/L); the effluent phosphorus was increased up to 1.9 mg/L at water temperature of $25^{\circ}C$; the DO increase was positive for heterotrophs and autotrophs growths but negative for PAOs growth; the PAOs showed low activity when C/N ratio was lower than 2.5. The experimental results indicated that the calibrated models can assure the prediction quality of the ASMs and can be used to optimize the $A_2O$ process.

Optimal Trajectory Finding and re-optimization of SBR for Nitrogen Removal (연속 회분식 반응기에서 최적 질소 제거를 위한 최적 궤적 찾기와 재최적화)

  • Kim, Young-Whang;Yoo, ChangKyoo;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This article aims to optimize the nitrogen removal of a sequencing batch reactor (SBR) through the use of the activated sludge model and iterative dynamic programming (IDP). Using a minimum batch time and a maximum nitrogen removal for minimum energy consumption, a performance index is developed on the basis of minimum area criteria for SBR optimization. Choosing area as the performance index makes the optimization problem simpler and a proper weighting in the performance index makes it possible to solve minimum time and energy problem of SBR simultaneously. The optimized results show that the optimal set-point of dissolved oxygen affects both the total batch time and total energy cost. For two different influent loadings, IDP-based SBR optimizations suggest each supervisory control of batch scheduling and set-point trajectory of dissolved oxygen (DO) concentration, and can save 20% of the total energy cost, while meeting the treatment requirements of COD and nitrogen. Moreover, it shows that the re-optimization of IDP within a batch can solve the modelling error problem due to the influent loading changes, or the process faults.