• Title/Summary/Keyword: Activated Carbons

Search Result 292, Processing Time 0.027 seconds

Adsorption Behaviors of Noxious Gases on Chemically Surface-treated Activated Carbons

  • Park, Soo-Jin;Shin, Jun-Sik
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.31-35
    • /
    • 2003
  • The specific adsorption behaviors of activated carbons (ACs) treated with 30 wt% $H_3PO_4$ or NaOH were investigated in the removals of NO or $NH_3$. The acid and base values were determined by Boehm's titration method. And, the surface properties of ACs were studied by FT-IR and XPS analyses. Also, $N_2/77K$ adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET and t-plot methods, respectively. From the adsorption tests of NO and $NH_3$, it was revealed in the case of acidic treatment on ACs that the $NH_3$ removal was more effective due to the increase of acidic functional groups in carbon surfaces. Also, the NO removal was increased, in the case of basic treatment, due to the improvement of basic functional groups, in spite of significant decreases of BET's specific surface area and total pore volume. It was found that the adsorption capacity of ACs was not only determined by the textural characteristics but also correlated with the surface functional groups in the acid-base intermolecular interactions.

  • PDF

Elemental Mercury Adsorption Behaviors of Chemically Modified Activated Carbons

  • Kim, Byung-Joo;Bae, Kyong-Min;An, Kay-Hyeok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1321-1326
    • /
    • 2011
  • In this work, the effects of different surface functional groups on the elemental mercury adsorption of porous carbons modified by chemical treatments were investigated. The surface properties of the treated carbons were observed by Boehm's titration and X-ray photoelectron spectroscopy (XPS). It was found that the textural properties, including specific surface area and pore structures, slightly decreased after the treatments, while the oxygen content of the ACs was predominantly enhanced. Elemental mercury adsorption behaviors of the acidtreated ACs were found to be four or three times better than those of non-treated ACs or base-treated ACs, respectively. This result indicates that the different compositions of surface functional groups can lead to the high elemental mercury adsorption capacity of the ACs. In case of the acid-treated ACs, the $R_{C=O}/R_{C-O}$ and $R_{COOH}/R_{C-O}$ showed higher values than those of other samples, indicating that there is a considerable relationship between mercury adsorption and surface functional groups on the ACs.

Pore Structure Characterization of Poly(vinylidene chloride)-Derived Nanoporous Carbons

  • Jung, Hwan Jung;Kim, Yong-Jung;Lee, Dae Ho;Han, Jong Hun;Yang, Kap Seung;Yang, Cheol-Min
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.236-242
    • /
    • 2012
  • Poly(vinylidene chloride) (PVDC)-derived nanoporous carbons were prepared by various activation methods: heat-treatment under an inert atmosphere, steam activation, and potassium hydroxide (KOH) activation at 873, 1073, and 1273 K. The pore structures of PVDC-derived nanoporous carbons were characterized by the $N_2$ adsorption technique at 77 K. Heat treatment in an inert atmosphere increased the specific surface area and micropore volume with elevating temperature, while the average micropore width near 0.65 nm was not significantly changed, reflecting the characteristic pore structure of ultramicroporous carbon. Steam activation for PVDC at 873 and 1073 K also yielded ultramicroporosity. On the other hand, the steam activated sample at 1273 K had a wider average micropore width of 1.48 nm, correlating with a supermicropore. The KOH activation increased the micropore volume with elevating temperature, which is accompanied by enlargement of the average micropore width from 0.67 to 1.12 nm. The average pore widths of KOH-activated samples were strongly governed by the activation temperature. We expect that these approaches can be utilized to simply control the porosity of PVDC-derived nanoporous carbons.

Correlations Between Pore Structure of Activated Carbon and Adsorption Characteristics of Acetone Vapor (활성탄의 세공구조와 Acetone Vapor 흡착특성의 상관관계)

  • Lee, Song-Woo;Bae, Sang-Kyu;Kwon, Jun-Ho;Na, Young-Soo;An, Chang-Doeuk;Yoon, Young-Sam;Song, Seung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.620-625
    • /
    • 2005
  • This study is to investigate the correlation between pore structures of activated carbons and adsorption characteristics of acetone vapor using the dynamic adsorption method. The experimental results showed that the breakthrough time of ACT activated carbon made by Takeda was the longest, because ACT has more micropores below pore diametr $10{\AA}$ than the compared activated carbons. The equilibrium adsorption capacity had direct correlation to the breakthrough time. The relation between BET specific surface area and the equilibrium adsorption capacity was hard to say linear. Therefore, it was difficult to estimate the adsorption ability of activated carbons only by BET specific surface area. The correlation factor between the cumulative surface area and the equilibrium adsorption capacity decreased with enlarging the range of pore size, and there was the highest correlation factor in the range of below $10{\AA}$.

Preparation of Spherical Activated Carbon and Their Physicochemical Properties

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Meng, Ze-Da
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.568-573
    • /
    • 2009
  • In this study, we used coal based activated carbons as starting material and phenolic resin (PR) as a bonding agent to prepare spherical shaped activated carbons. The textural properties of SAC were characterized by BET surface area, XRD, SEM, iodine adsorption, strength intensity and pressure drop. According to the results, the spherical activated carbon prepared with activated carbon and PR at a ratio of 60:40 was found to have the best formation of spherical shape, which was found in sample SAC40. After activation, SAC40 has high BET surface area, iodine adsorption capability and strength value, and lowest pressure drop.

Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons

  • Yoo, Hye-Min;Lee, Seul-Yi;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.112-115
    • /
    • 2011
  • The scope of this work investigates the relationship between the amount of oxygen-functional groups and hydrogen adsorption capacity with different concentrations of phosphoric acid. The amount of oxygen-functional groups of activated carbons (ACs) is characterized by X-ray photoelectron spectroscopy. The effects of chemical treatments on the pore structures of ACs are investigated by $N_2$/77 K adsorption isotherms. The hydrogen adsorption capacity is measured by $H_2$ isothermal adsorption at 298 K and 100 bar. In the results, the specific surface area and pore volume slightly decreased with the chemical treatments due to the pore collapsing behaviors, but the hydrogen storage capacity was increased by the oxygen-functional group characteristics of AC surfaces, resulting from enhanced electron acceptor-donor interaction at interfaces.

Adsorption of cationic dye (MB) and anionic dye (AG 25) by physically and chemically activated carbons developed from rice husk

  • Youssef, A.M.;Ahmed, A.I.;El-Bana, U.A.
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.61-72
    • /
    • 2012
  • Dye removal from waste water via adsorption by activated carbons (ACs) developed from agricultural wastes represents an ideal alternative to other expensive treatment options. Physical and chemical ACs were prepared from rice husks. The textural properties of the ACs were characterized by Brunauer-Emmett-Teller-$N_2$ adsorption and scanning electron microscopy. The chemistry of the carbon surface was investigated by Fourier transform infrared spectroscopy, base and acid neutralization capacities, pH of the active carbon slurry, and $pH_{pzc}$. The adsorption capacities of the ACs for the basic dye (methylene blue) and acid dye (acid green 25) were determined using parameters such as contact time, pH, and temperature. NaOH-ACs showed the highest surface area and total pore volume, whereas steam-ACs showed the lowest ones.

Preparation of Novel Sorbents for Gas-phase Mercury Removal

  • Lee, Si-Hyun;Rhim, Young-Jun;Park, Young-Ok
    • Carbon letters
    • /
    • v.3 no.4
    • /
    • pp.187-191
    • /
    • 2002
  • In the present research, we prepared the activated carbon (AC) sorbents to remove gas-phase mercury. The mercury adsorption of virgin AC, chemically treated AC and fly ash was performed. Sulfur impregnated and sulfuric acid impregnated ACs were used as the chemically treated ACs. A simulated flue gas was made of SOx, NOx and mercury vapor in nitrogen balance. A reduced mercury adsorption capacity was obtained with the simulated gas as compared with that containing only mercury vapor in nitrogen. With the simulated gas, the sulfuric acid treated AC showed the highest performance, but it might have the problem of corrosion due to the emission of sulfuric acid. It was also found that the high sulfur impregnated AC also released a portion of sulfur at $140^{\circ}C$. Thus, it was concluded that the low sulfur impregnated AC was suitable for the treatment of flue gas in terms of stability and efficiency.

  • PDF

Characterization of Activated Carbon from Wood by ZnCl2 (염화아연(ZnCl2) 부활법에 의해 제조한 목재 활성탄의 특성)

  • Kwon, Gu-Joong;Kwon, Sung-Min;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • The effect of ratio between chemical activating agent and raw material in the preparation of activated carbons from wood has been studied. Pinus koraiensis wood and zinc chloride ($ZnCl_2$) were used for materials in this study. Mixtures of wood and zinc chloride were heated under nitrogen flow in the temperature ranging from room-temperature to $600^{\circ}C$ for 1 hr using thermogravimetric technique. During heat treatment, activated carbons with various pore size and specific surface properties were obtained. The maximum BET surface area and total pore volume were $1468m^2/g$ and 1.74 cc/g, respectively, at the mixture ratio of 1 (wood powder) to 5 ($ZnCl_2$). It can be concluded that the differences in the properties of the activated carbons were related significantly with the ratio of chemical activating regent.

  • PDF

Adsorption Characteristics of Acetone, Benzene, and Metylmercaptan by Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 활성탄에 의한 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성)

  • Kam, Sang-Kyu;Kang, Kyung-Ho;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.663-669
    • /
    • 2017
  • Activated carbons were prepared from waste citrus peels using KOH, NaOH, and $ZnCl_2$ as activating chemicals. They were prepared at optimal conditions including the chemical ratio of 300%, activation time of 1.5h, and activation temperature of $900^{\circ}C$ for KOH, $700^{\circ}C$ for NaOH, and $600^{\circ}C$ for $ZnCl_2$, which were named as ACK, ACN, and ACZ, respectively. Using the activated carbons, their adsorption characteristics for three target gases such as acetone, benzene, and methylmercaptan (MM) were carried out in a batch reactor. The adsorption behavior of activated carbons for three target gases followed the Freundlich model better than the Langmuir. And the experimental kinetic data followed a pseudo-second-order kinetic model more than pseudo-first-order one. Following the intraparticle diffusion model suggested that the external mass transfer and particle diffusion were occurred simultaneously during the adsorption process.