• Title/Summary/Keyword: Action-selection-mechanism

Search Result 23, Processing Time 0.031 seconds

A Novel Action Selection Mechanism for Intelligent Service Robots

  • Suh, Il-Hong;Kwon, Woo-Young;Lee, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2027-2032
    • /
    • 2003
  • For action selection as well as learning, simple associations between stimulus and response have been employed in most of literatures. But, for a successful task accomplishment, it is required that an animat can learn and express behavioral sequences. In this paper, we propose a novel action-selection-mechanism to deal with sequential behaviors. For this, we define behavioral motivation as a primitive node for action selection, and then hierarchically construct a network with behavioral motivations. The vertical path of the network represents behavioral sequences. Here, such a tree for our proposed ASM can be newly generated and/or updated, whenever a new sequential behaviors is learned. To show the validity of our proposed ASM, three 2-D grid world simulations will be illustrated.

  • PDF

지능로봇을 위한 행동선택 및 학습구조 (An Action Selection Mechanism and Learning Algorithm for Intelligent Robot)

  • 윤영민;이상훈;서일홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.496-498
    • /
    • 2004
  • An action-selection-mechanism is proposed to deal with sequential behaviors, where associations between some of stimulus and behaviors will be learned by a shortest-path-finding-based reinforcement team ins technique. To be specific, we define behavioral motivation as a primitive node for action selection, and then sequentially construct a network with behavioral motivations. The vertical path of the network represents a behavioral sequence. Here, such a tree fur our proposed ASM can be newly generated and/or updated. whenever a new sequential behaviors is learned. To show the validity of our proposed ASM, some experimental results on a "pushing-box-into-a-goal task" of a mobile robot will be illustrated.

  • PDF

동물 행동학 기반 행동 선택 메커니즘하에서의 교시 기반 행동 학습 방법 (Teaching-based Perception-Action Learning under an Ethology-based Action Selection Mechanism)

  • 문지섭;이상형;서일홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.1147-1148
    • /
    • 2008
  • In this paper, we propose action-learning method based on teaching. By adopting this method, we can handle an exception case which cannot be handled in an Ethology-based Action SElection mechanism. Our proposed method is verified by employing AIBO robot as well as EASE platform.

  • PDF

A Motivation-Based Action-Selection-Mechanism Involving Reinforcement Learning

  • Lee, Sang-Hoon;Suh, Il-Hong;Kwon, Woo-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.904-914
    • /
    • 2008
  • An action-selection-mechanism(ASM) has been proposed to work as a fully connected finite state machine to deal with sequential behaviors as well as to allow a state in the task program to migrate to any state in the task, in which a primitive node in association with a state and its transitional conditions can be easily inserted/deleted. Also, such a primitive node can be learned by a shortest path-finding-based reinforcement learning technique. Specifically, we define a behavioral motivation as having state-dependent value as a primitive node for action selection, and then sequentially construct a network of behavioral motivations in such a way that the value of a parent node is allowed to flow into a child node by a releasing mechanism. A vertical path in a network represents a behavioral sequence. Here, such a tree for our proposed ASM can be newly generated and/or updated whenever a new behavior sequence is learned. To show the validity of our proposed ASM, experimental results of a mobile robot performing the task of pushing- a- box-in to- a-goal(PBIG) will be illustrated.

인공생명체를 위한 행동선택 구조 (Action Selection Mechanism for Artificial Life System)

  • 김민조;권우영;이상훈;서일홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.178-182
    • /
    • 2002
  • For action selection as well as teaming, simple associations between stimulus and response have been employed in most of literatures. But, for successful task accomplishment, it is required that artificial life system can team and express behavioral sequences. In this paper, we propose a novel action-selection-mechanism to deal with behavioral sequences. For this, we define behavioral motivation as a primitive node for action selection, and then hierarchically construct a tree with behavioral motivations. The vertical path of the tree represents behavioral sequences. Here, such a tree for our proposed ASM can be newly generated and/or updated, whenever a new behavioral sequence is learned. To show the validity of our proposed ASM, three 2-D grid world simulations will be illustrated.

  • PDF

지능로봇의 동기 기반 행동선택을 위한 베이지안 행동유발성 모델 (Motivation-Based Action Selection Mechanism with Bayesian Affordance Models for Intelligence Robot)

  • 손광희;이상형;서일홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.264-266
    • /
    • 2009
  • A skill is defined as the special ability to do something well, especially as acquired by learning and practice. To learn a skill, a Bayesian network model for representing the skill is first learned. We will regard the Bayesian network for a skill as an affordance. We propose a soft Behavior Motivation(BM) switch as a method for ordering affordances to accomplish a task. Then, a skill is constructed as a combination of an affordance and a soft BM switch. To demonstrate the validity of our proposed method, some experiments were performed with GENIBO(Pet robot) performing a task using skills of Search-a-target-object, Approach-a-target-object, Push-up-in front of -a-target-object.

  • PDF

지능로봇: 지능 에이전트를 기초로 한 접근방법 (Intelligent Robot Design: Intelligent Agent Based Approach)

  • 강진식
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.457-467
    • /
    • 2004
  • 본 논문에서는 로봇을 하나의 에이전트로 보고 로봇에 필요한 기능-환경인지, 지능, 행동-등을 부-에이전트로 하는 로봇 구조를 제안하였다. 각각의 부 에이전트들은 로봇 기능의 기초단위를 구성하는 마이크로 에이전트로 구성된다. 로봇의 제어 구조는 행위기반 반사행동 제어 형태와 행동 선택 에이전트로 구성되며, 행동 선택 에이전트에서의 행동 선택은 행동 우선순위, 수행성능, 강화학습에 의한 학습기능을 부가하였다. 제시된 로봇 구조는 다중 부-에이전트 구조로 각각의 기능에 대하여 지능을 부여하기 쉬우며 다중 로봇 제어를 위한 새로운 접근 방법이다. 제시된 로봇을 장애물을 회피와 chaotic한 탐색을 목표로 하여 모의실험을 수행하였으며 8bit 마이크로 콘트롤러를 이용하여 제작 실험하였다.

베이지안 행동유발성 모델을 이용한 행동동기 기반 행동 선택 메커니즘 (Behavioral motivation-based Action Selection Mechanism with Bayesian Affordance Models)

  • 이상형;서일홍
    • 전자공학회논문지SC
    • /
    • 제46권4호
    • /
    • pp.7-16
    • /
    • 2009
  • 로봇이 지능적이고 합리적으로 임무를 수행하기 위해서는 다양한 솜씨(skill)가 필요하다. 우리는 솜씨를 생성하기 위해 우선 행동유발성(affordance)을 학습한다. 행동유발성은 행동을 유발하게 하는 물체 또는 환경의 성질로써 솜씨를 생성하는데 유용하게 사용될 수 있다. 로봇이 수행하는 대부분의 임무는 순차적이고 목표 지향적인 행동을 필요로 한다. 그러나 행동유발성만을 이용하여 이러한 임무를 수행하는 것은 쉽지 않다. 이를 위해 우리는 행동유발성과 목표 지향적 요소를 반영하기 위한 소프트 행동동기 스위치(soft behavioral motivation switch)를 이용하여 솜씨를 생성한다. 솜씨는 현재 인지된 정보와 목표 지향적 요소를 결합하여 행동동기를 생성한다. 여기서 행동동기는 목표 지향적인 행동을 활성화시키기 위한 내부 상태를 말한다. 또한, 로봇은 임무 수행을 위해 순차적인 행동 선택을 필요로 한다. 우리는 목표 지향적이고 순차적인 행동 선택이 가능하도록 솜씨를 이용하여 솜씨 네트워크(skill network)를 생성한다. 로봇은 솜씨 네트워크를 이용하여 목표 지향적이고 순차적인 행동을 선택할 수 있다. 본 논문에서는 베이지안 네트워크를 이용한 행동유발성 모델링 및 학습 방법, 행동유발성과 소프트 행동동기 스위치를 이용한 솜씨 및 솜씨 네트워크 생성 방법, 마지막으로 솜씨 네트워크를 이용한 목표 지향적 행동 선택 방법을 제안한다. 우리의 방법을 증명하기 위해 제니보(애완 로봇)를 이용한 교시 기반 학습 방법을 통해 "물체 찾기", "물체에 접근하기", "물체의 냄새 맡기", 그리고 "물체를 발로 차기" 행동유발성들을 학습하였다. 또한, 이들을 이용하여 솜씨 및 솜씨 네트워크를 생성하여 제니보에 적용하고 실험하였다.

지능형 에이전트의 환경 적응성 및 확장성 (A study on environmental adaptation and expansion of intelligent agent)

  • 백혜정;박영택
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.795-802
    • /
    • 2003
  • 로봇이나 가상 캐릭터와 같은 지능형 에이전트가 자율적으로 살아가기 위해서는 주어진 환경을 인식하고, 그에 맞는 최적의 행동을 선택하는 능력을 가지고 있어야 한다. 본 논문은 이러한 지능형 에이전트를 구현하기 위하여, 외부 환경에 적응하면서 최적의 행동을 배우고 선택하는 방법을 연구하였다. 본 논문에서 제안한 방식은 강화 학습을 이용한 행동기반 학습 방법과 기호 학습을 이용한 인지 학습 방법을 통합한 방식으로 다음과 같은 특징을 가진다. 첫째, 강화 학습을 이용하여 환경에 대한 적응성을 학습함으로 지능형 에이전트가 변화하는 환경에 대한 유연성을 가지도록 하였다. 둘째, 귀납적 기계학습과 연관 규칙을 이용하여 규칙을 추출하여 에이전트의 목적에 맞는 환경 요인을 학습함으로 주어진 환경에서 보다 빠르게, 확장된 환경에서 보다 효율적으로 행동을 선택을 하도록 하였다. 셋째, 본 논문은 지능형 에이전트를 구현하는데 있어서 처음부터 모든 상태를 고려하기 보다 상태 탐지기를 이용하여 새로운 상태가 입력될 때마다 상태를 확장시키는 방식을 이용하였다. 이러한 방식은 필요한 상태에 대하여서만 고려함으로 메모리를 획기적으로 축소 할 수 있으며, 새로운 상태를 동적으로 처리 할 수 있어, 환경에 대한 변화에 능동적으로 대처 할 수 있다.

A Mechanism to Derive Optimal Contractor-type & Action Comginations of a Single-source Procurement Contract

  • 정승호
    • 한국경영과학회지
    • /
    • 제24권2호
    • /
    • pp.41-51
    • /
    • 1999
  • In sole-source procurement contraction for government goods and services, the buyer (government) needs to derive the optimal actions from the contractor so the buyer can obtain the maximum utility and the contractor, or single-source supplier, is guaranteed the equivalent of a minimum level of profit. Under the assumption of risk-neutrality for both the buyer and the contractor and the buyer's unobservability of the contractor's action, it is necessary for the buyer to design a (mathematical) model to achieve the above objective. This paper considers the mathematical formulation in which two problems - moral hazard and adverse selection - are present simultaneously; furthermore, from the formulation, a GAMS (General Algebraic Modeling System) program is used for a possible buyer to obtain the optimal actions.

  • PDF