• Title/Summary/Keyword: Action with action observation

Search Result 198, Processing Time 0.031 seconds

The Effect of Action Observation on Motor Function of Paretic Upper Extremity in Stroke Patients: Single Subject Study (동작관찰훈련이 뇌졸중 환자의 마비측 상지기능에 미치는 영향: 단일사례연구)

  • Jeong, Woo-Sik;Yun, Tae-Won;Choi, Yeon-Jeong;Lee, Hong-Gyun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.2
    • /
    • pp.271-280
    • /
    • 2013
  • PURPOSE: This study was conducted in chronic hemiplegic patients to examine the effect of the training of the ipsilateral arm that is identical to the model performing movements and the training of the contralateral arm on the function of the arm. METHODS: The subjects were participated total 2 patients(the subject 1 with left hemiplegia and the subject 2 with right hemiplegia). The study was conducted for 4 weeks. The action observation training were repeated 10 times in 10 days during intervention period. The evaluation of the arm function such as BBT, MFT and MAL in the each subject were examined 5 times in the baseline period, 10 times during the intervention period and 5 times during the baseline regression period. RESULTS: The results of the evaluation in each subject were presented as mean values and video graphs. The arm function of the 2 subjects were improved during the intervention period in comparison with the baseline period, and the improvement was maintained even during the regression baseline period. In addition, there were large variation ratio of BBT and MAL (AOU, QOM) in comparison with subject 1. CONCLUSION: According to the results, the action observation training was more effective in improving upper limb function of stroke patients who imitate the performed behavior of paralyed parts on the same side.

Effects of Functional Electrical Stimulation Intensity Level on Corticomuscular Coherence during Action Observation

  • Kim, Ji Young;Noh, Hyunju;Park, Jiwon
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.5
    • /
    • pp.307-311
    • /
    • 2020
  • Purpose: This study examined the effects of changes in the intensity of Functional Electrical Stimulation (FES) on CorticoMuscular Coherence (CMC) during action observation. This paper presents a neurophysiological basis for the effective intensity of FES. Methods: Twenty-seven healthy volunteers were asked to observed a video with FES. The FES was provided with a sensory stimulation level, nerve stimulation level, and motor stimulation level. Simultaneously, an electroencephalogram (EEG) of the sensorimotor cortex and electromyogram (EMG) from the wrist extensor muscle were recorded. The peak CMC and average CMC were analyzed to compare the differences caused by the FES intensity. Results: The peak CMC showed a significant increase in the alpha band during motor stimulation (p<0.05). The average CMC showed a significant increase in the beta band during motor stimulation (p<0.05). Conclusion: The intensity of FES, which causes actual movement, increased the CMC during action observation. These results show that the intensity of the FES can affect the functional connection between the sensorimotor cortex and muscle.

A Comprasion of the Activation of Mirror Neurons Induced by Action Observation between Simple and Complex Hand Movement

  • Lee, Mi Young;Kim, Ju Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.3
    • /
    • pp.157-160
    • /
    • 2019
  • Purpose: We compared the activation pattern of the mirror neurons (MN) between two types of hand movement according to action observation using functional MRI. Methods: Twelve right-handed healthy subjects (5 male and 7 female, mean age $21.92{\pm}2.02years$) participated in the experiment. During fMRI scanning, subjects underwent two different stimuli on the screen: 1) video clips showing repeated grasping and releasing of the ball via simple hand movement (SHM), and (2) video clips showing an actor performing a Purdue Pegboard test via complex hand movement (CHM). paired t-test in statistical parametric mapping (SPM) was used to compare the activation differences between the two types of hand movement. Results: CHM as compared with the SHM produced a higher blood oxygen level dependent (BOLD) signal response in the right superior frontal gyrus, left inferior and superior parietal lobules, and lingual gyrus. However, no greater BOLD signal response was found by SHM compared with CHM (FWE corrected, p<0.05). Conclusion: Our findings provided that the activation patterns for observation of SHM and CHM are different. CHM also elicited boarder or stronger activations in the brain, including inferior parietal lobule called the MN region.

The effects of action observation and motor imagery of serial reaction time task(SRTT) in mirror neuron activation (연속 반응 시간 과제 수행의 행위 관찰과 운동 상상이 거울신경활성에 미치는 영향)

  • Lee, Sang-Yeol;Lee, Myung-Hee;Bae, Sung-Soo;Lee, Kang-Seong;Gong, Won-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.395-404
    • /
    • 2010
  • Purpose : The object of this study was to examine the effect of motor learning on brain activation depending on the method of motor learning. Methods : The brain activation was measured in 9 men by fMRI. The subjects were divided into the following groups depending on the method of motor learning: actually practice (AP, n=3) group, action observation (AO, n=3) group and motor imagery (MI, n=3) group. In order to examine the effect of motor learning depending on the method of motor learning, the brain activation data were measured during learning. For the investigation of brain activation, fMRI was conducted. Results : The results of brain activation measured before and during learning were as follows; (1) During learning, the AP group showed the activation in the following areas: primary motor area located in precentral gyrus, somatosensory area located in postcentral gyrus, supplemental motor area and prefrontal association area located in precentral gyrus, middle frontal gyrus and superior frontal gyrus, speech area located in superior temporal gyrus and middle temporal gyrus, Broca's area located in inferior parietal lobe and somatosensory association area of precuneus; (2) During learning, the AD groups showed the activation in the following areas: primary motor area located in precentral gyrus, prefrontal association area located in middle frontal gyrus and superior frontal gyrus, speech area and supplemental motor area located in superior temporal gyrus and middle temporal gyrus, Broca's area located in inferior parietal lobe, somatosensory area and primary motor area located in precentral gyrus of right cerebrum and left cerebrum, and somatosensory association area located in precuneus; and (3) During learning, the MI group showed activation in the following areas: speech area located in superior temporal gyrus, supplemental area, and somatosensory association area located in precuneus. Conclusion : Given the results above, in this study, the action observation was suggested as an alternative to motor learning through actual practice in serial reaction time task of motor learning. It showed the similar results to the actual practice in brain activation which were obtained using activation of mirror neuron. This result suggests that the brain activation occurred by the activation of mirror neuron, which was observed during action observation. The mirror neurons are located in primary motor area, somatosensory area, premotor area, supplemental motor area and somatosensory association area. In sum, when we plan a training program through physiotherapy to increase the effect during reeducation of movement, the action observation as well as best resting is necessary in increasing the effect of motor learning with the patients who cannot be engaged in actual practice.

The Effect of Convergency : Using Digital Contents Action Observation Educations and Task-Oriented Occupational Therapy on Activity of Daily Living and Upper Extremity Function in Patients With Stroke (동작관찰 디지털콘텐츠 활용교육과 과제 지향적 작업치료의 융합이 뇌졸중 환자의 상지기능과 일상생활수행에 미치는 효과)

  • Kim, Ko-Un;Kim, Tae-Sue;Oh, Hye-Won
    • Journal of Digital Convergence
    • /
    • v.13 no.7
    • /
    • pp.445-452
    • /
    • 2015
  • This study examined the effects of task-oriented occupational therapy without action observation training and action observation on hemiplegic patients' upper extremity functions and activities of daily living. The stroke patients were randomly and equally assigned to an experimental group (action observation) and a control group (task-oriented occupational therapy). They received the intervention five times per week, 30 minutes per each time, for five weeks. In order to look at upper extremity functions of the paretic side before and after the intervention, Jebsen-Taylor Hand Function Test (JTHFT) and Box and Bock Test (BBT) were conducted and in order to compare activities of daily living, Korean-Version of Modified Barthel index (K-MBI) was examined. According to the results, upper extremity functions and activities of daily living in both groups increased and there was no difference between the two groups. Therefore, action observation and task-oriented occupational therapy had positive effects on stroke patients' upper extremity functions and activities of daily living.

The Effect of Action Observation with Observation Type on Limits of Stability and Dynamic Gait Ability in Stroke Patients (관찰형태에 따른 동작관찰 훈련이 뇌졸중 환자의 안정성 한계와 동적보행능력에 미치는 영향)

  • Yang, Yong-Pil;Kim, Su-Jin
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.1
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSE: The purpose of this study was to determine the effect of action observation with observation type on the limits of stability and dynamic gait ability in stroke patients. METHODS: The 20 stroke patients who participated in this study were randomly divided into two experimental groups who underwent training three times a week for 4 weeks. Their balance was tested as the limit of stability with Biorescue. Their Dynamic gait ability was tested with the Dynamic Gait Index (DGI) before the intervention, and after 4 weeks. Independent and paired t-tests were used to analyze the results. RESULTS: The results confirmed the limit of stability on the moving areas of the paralyzed and non-paralyzed sides. The limit of stability and dynamic gait index measurements confirmed that the moving area showed a significant difference after the intervention in the whole movement observation group (p<.05), but the partial movement observation group showed no significant difference (p>.05). A significant difference was also noted for the comparison between the both groups after the interventions (p<.05). The functional walking ability showed a significant difference when compared to the ability before the intervention, as determined by the changes in scores obtained for the dynamic gait index (p<.05). CONCLUSION: Interventions utilizing whole movement confirm that training improves stability and functional walking ability in stroke patients with disabilities in balance and walking ability.

Influence of Transcranial Direct Current Stimulation on Lower Limb Muscle Activation and Balance Ability in Soccer Player

  • Yang, Dae Jung;Park, Seung Kyu;Uhm, Yo Han
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.6
    • /
    • pp.211-217
    • /
    • 2018
  • Purpose: This study is to investigate influence of tDCS on lower limb muscle activity and balance ability in soccer player. Methods: Sessions were conducted with 15 subjects in tDCS group and 15 in action observation training group for 20 minutes, 5 sessions a week, for 8 weeks. All soccer players underwent 30 minutes of plyometric training before main exercise. To evaluate lower limb muscle activation, rectus femoris and biceps femoris were taken measure using surface electromyogram system and to evaluate balance ability, surface area, whole path length, limited of stability were measured using biorescue. Results: Regarding balance shown in surface area, whole path length, limited of stability and muscle activation in rectus femoris and biceps femoris, tDCS group showed more significant change than action bservation training group. Conclusion: Therefore, intervention using tDCS is more effective in improving lower limb muscle activation and balance ability than action observation training.

Computational Model of a Mirror Neuron System for Intent Recognition through Imitative Learning of Objective-directed Action (목적성 행동 모방학습을 통한 의도 인식을 위한 거울뉴런 시스템 계산 모델)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.606-611
    • /
    • 2014
  • The understanding of another's behavior is a fundamental cognitive ability for primates including humans. Recent neuro-physiological studies suggested that there is a direct matching algorithm from visual observation onto an individual's own motor repertories for interpreting cognitive ability. The mirror neurons are known as core regions and are handled as a functionality of intent recognition on the basis of imitative learning of an observed action which is acquired from visual-information of a goal-directed action. In this paper, we addressed previous works used to model the function and mechanisms of mirror neurons and proposed a computational model of a mirror neuron system which can be used in human-robot interaction environments. The major focus of the computation model is the reproduction of an individual's motor repertory with different embodiments. The model's aim is the design of a continuous process which combines sensory evidence, prior task knowledge and a goal-directed matching of action observation and execution. We also propose a biologically inspired plausible equation model.

Development of a Reduction Algorithm of GEO Satellite Optical Observation Data for Optical Wide Field Patrol (OWL)

  • Park, Sun-youp;Choi, Jin;Jo, Jung Hyun;Son, Ju Young;Park, Yung-Sik;Yim, Hong-Suh;Moon, Hong-Kyu;Bae, Young-Ho;Choi, Young-Jun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.201-207
    • /
    • 2015
  • An algorithm to automatically extract coordinate and time information from optical observation data of geostationary orbit satellites (GEO satellites) or geosynchronous orbit satellites (GOS satellites) is developed. The optical wide-field patrol system is capable of automatic observation using a pre-arranged schedule. Therefore, if this type of automatic analysis algorithm is available, daily unmanned monitoring of GEO satellites can be possible. For data acquisition for development, the COMS1 satellite was observed with 1-s exposure time and 1-m interval. The images were grouped and processed in terms of "action", and each action was composed of six or nine successive images. First, a reference image with the best quality in one action was selected. Next, the rest of the images in the action were geometrically transformed to fit in the horizontal coordinate system (expressed in azimuthal angle and elevation) of the reference image. Then, these images were median-combined to retain only the possible non-moving GEO candidates. By reverting the coordinate transformation of the positions of these GEO satellite candidates, the final coordinates could be calculated.

Effect of a Combined Functional Electrical Stimulation with Action Observation Training on the Upper Limb Global Synkinesis and Function of Patients with Stroke

  • Kang, Jeongil;Kim, Huikyeong;Jeong, Daekeun;Park, Seungkyu;Yang, Daejung;Kim, Jeho;Moon, Youngjun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.1
    • /
    • pp.2012-2020
    • /
    • 2020
  • Background: Multifaceted approaches will be needed, such as global synkinesis (GS) achieve functional improvements in the arms of stroke patients from involuntary movements during exercise. Objective: To identify changes in arm GS and muscle activity, functional evaluation and the correlation with variables through action observation training, combined with functional electrical stimulation (FES), thereby verifying the effect on stroke patients. Design: A quasi-experimental study. Methods: The subjects of this study were 20 stroke patients who were divided into two groups: Control group (n=10) and experimental group (n=10). Before the intervention, arm GS and muscle activity were measured using surface electromyography (EMG), and arm function was evaluated using the Fugl-Meyer Assessment (FMA) scale. At the end of the intervention, which lasted 4-wk, arm GS and muscle activity were measured again using the same scale. Results: There was a decrease statistically significant difference in GS during the bending action in experimental group (P<.01). Both groups showed a significant difference increased only in the activity of the anterior deltoid (AD) and biceps brachii (BB) (P<.05). The results of the arm functional assessment revealed a significant difference increase in both groups (P<.05). In the between-group comparison, there was a significant difference decrease in GS during the bending action (P<.05). Only the muscle activity of the AD and BB were significantly increase different (P<.05). There was a significant between-group difference increase in the arm functional assessment (P<.05). There was a positive correlation between GS and muscle activity on the FMA in the control group (r=.678, P<.05). In experimental group, GS during the bending arm action exhibited a negative correlation (r=-.749, P<.05), and the muscle activity of the AD and BB showed a positive correlation (r=.701, P<.05). Furthermore, in experimental group, the activity of the extensor carpi radialis increased, and the activity of the flexor carpi radialis decreased, which exhibited a negative correlation (r=-.708, P<.05). Conclusion: These results suggest that brain plasticity could be more efficiently stimulated by combining surface stimulation in the affected arm of stroke patients.